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Foreword 

Dinosaur ichnology has long been regarded as “nice... but useless” by geologist and 
vertebrate dinosaur researchers. After the earliest scientific reports by the founder of 
dinosaur ichnology, Edward Hitchcock in the early 30ties of the nineteenth century 
there was a long haul with almost no interest in the study of vertebrate tracks. In 
South America, particularly in Brazil, it was and is the merit of Giuseppe Leonardi 
to explore and document dinosaur tracks in the most remote places of the country. 
I first met him in the early 90thies of the last century when Martin Lockley and I 
visited him in Venice, and then on a visit to the famous Lavini di Marco tracksite in 
Trentino. 

People like Edward Hitchcock in the late nineteenth century and Giuseppe 
Leonardi in the last century planted the seed that led to a new generation of ichnolo-
gists. This started the “Dinosaur track renaissance” in the 80ties of the last century, 
Martin G. Lockley got the ball rolling. And we all try to follow the footsteps of this 
gentle giant who left us too soon. 

In Brazil, Ismar de Souza Carvalho, today a professor of geology and palaeon-
tology at the Federal University of Rio de Janeiro, started in the early 80ties of the last 
century, together with his students and other scholars to explore many regions looking 
for dinosaur tracks. The result was a school of Brazilian ichnology, the present book 
shows that in an impressive way. Twelve eminent ichnologists, vertebrate scholars, 
and geologists from all over the country, the two editors included from many Brazilian 
institutions present in ten chapters the state of the art of dinosaur ichnology in Brazil. 

The book includes the development of vertebrate ichnology and its studies before 
and after that renaissance. Our field has seen a dramatic increase of reports almost 
weekly on a global scale and is nowadays regarded as a valuable source of information 
on the palaeoecology and palaeobiology of dinosaurs, even by “hard core” vertebrate 
scholars and geologists alike. 

The contributors of this amazing collection of scientific articles have traveled from 
the flood plains in the south to the Amazon basin to areas where no skeletal remains of 
dinosaurs have been found but in the search for their tracks. Every major sedimentary 
basin of Brazil is covered in the book, always preceded by an introduction to the 
local geological history. But not only this, they include stratigraphic information as
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well as paleobiogeographic and palaeoecological interpretations that are too often 
neglected in books and papers on dinosaur footprints. On top of that, the importance 
of the substrate and the role of microbial mats for the preservation of tracks are 
discussed. Equally important is the teaming up of the scholars with prominent visual 
artist Guilherme Gehr. His reconstructions of the past landscapes are the artistic 
transformation of the data extracted from the fossil record by the specialists of this 
book. 

This collection of scientific articles is a holistic approach and a “homage” for 
the record of dinosaur tracks and trackways and their palaeoecological significance. 
Finally, a comprehensive book that summarizes more than 50 years of research on 
dinosaur ichnology in Brazil, long awaited and an important contribution to vertebrate 
ichnology. But it is more than that; it is a database for scholars and future researchers 
alike. 

January 2024 Prof. Christian A. Meyer 
Department of Environmental Sciences 

University of Basel 
Basel, Switzerland



Preface 

There is no branch of detective science 

which is so important and so much 

neglected as the art of tracing footsteps. 

—Sir Arthur Conan Doyle, 

A Study in Scarlet. 

The unearthing of a new fossil is the discovery of past life diversity. Nonetheless, the 
finding of an ichnofossil opens the possibility to understand the relationships among 
the organisms and aspects of their paleoautoecology. It is the possibility of bringing 
life from Earth’s biological past to the present time. 

The vertebrate ichnology, especially the study of dinosaur footprints and track-
ways, allows insights in the many biological remarks unable to observe directly 
through the osteology studies. Number of specimens, diversity, behavioral aspects, 
such as walking gaits, gregariousness, nidification, and diseases, are some matters 
that can be analyzed through the study of the dinosaur tracks and other traces. It 
allows a great insight into paleobiology and paleoecological interpretations. 

The proposal of the book Dinosaur Tracks of Mesozoic Basins in Brazil: Impact 
of Paleoenvironmental and Paleoclimatic Changes is to present the diversity of 
dinosaur tracks from the Mesozoic Brazilian basins and the paleoenvironmental 
contexts where the tracks are found. It is a book with 10 chapters written by Brazilian 
researchers from universities and the Geological Survey of Brazil. All chapters have 
regular research on geology and paleontology subjects. Each chapter will include 
information concerning the geological context, the dinosaur tracks in their diver-
sity and paleobiological interpretation; the paleogeographical distribution of the 
footprints, paleoenvironmental and paleoclimatic contexts, and extensive references 
about the Brazilian basins and their dinosaur footprints. The chapters discuss in detail 
the dinosaur footprints throughout Mesozoic basins in Brazil, including the Triassic 
and Jurassic deposits of Paraná Basin, the desert Cretaceous dinosaurs from Botucatu, 
Caiuá, and Sanfranciscana paleodeserts, and the Cretaceous dinosaur tracks found in
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interior and marginal basins linked to the events of the South America—Africa break 
up. The chapters are illustrated with geological maps, stratigraphic charts, countless 
images of the dinosaur footprints and trackways, and life reconstructions of the envi-
ronments in which the tracks were produced. The target audience is geoscientists 
and paleontologists, including researchers on evolution subjects. 

It is a unique book regarding dinosaur tracks from the Brazilian basins, 
with useful information to paleoenvironmental and paleoclimatic interpretations, 
allowing an overview of the environmental changes and the biological evolution 
throughout Mesozoic. There are exclusive paleoenvironmental color reconstructions 
of Mesozoic environments which illustrates the diversity of the dinosaur fauna. 

Dinosaur Tracks of Mesozoic Basins in Brazil is a comprehensive volume where 
it is possible to evaluate the impact of paleoenvironmental and paleoclimatic changes 
throughout the Mesozoic in the basins of the Brazilian Gondwana. A new insight in 
tracking dinosaurs, since their origin, until their last steps. 

After 50 years of systematic work in this specialized area, this book repre-
sents the fruit of a broad collaboration between Brazilian tetrapod ichnologists and 
between academic and scientific institutions of Brazil, including the collaboration of 
a Brazilian artist, who worked in the reconstruction of old life environments, based 
on the careful information provided by the team of authors. 

This book is somehow also the story of men and women who went on the adven-
ture of hunting dinosaurs also where had been found no bones; to witness their 
presence in flawed environments for body fossils. Sometimes, in this way, finding 
for the first time fossil material in unexplored basins, sometimes managing to re-
date stratigraphic units, previously considered Paleozoic, for lack of fossils or lack 
of study. They traveled, in the great and wide country that is Brazil, on the one hand 
huge paths in time, seeking the tracks of the oldest dinosaurs from their first steps, in 
the Carnian, until their fall, at the end of the Cretaceous. On the other hand, Brazilian 
tetrapod ichnologists traveled great distances on the ground, visiting, in search of 
fossil footprints, virtually all the sedimentary basins of Brazil, from the southern 
flooded plains, to the rain forest through the Amazonian rivers. 

Our primary audience is vertebrate paleontologists, students, and professors, who 
are engaged in research on dinosaurs and, more generally, tetrapods. Moreover, we 
wish that this book can be able to provide a useful database also for the paleon-
tologists of invertebrates and paleobotanists. Above all, we hope that geologists, 
sedimentologists, biostratigraphers, and paleoecologists will be interested in this 
topic, which is not always recognized. Paleontology teachers, science professors in 
schools, interested enthusiasts, and evolutionary researchers will also find materials 
of their interest. Finally, we hope that news reporters, who have the very important 
mission of correctly informing the public about dinosaurs, a theme that comes up 
very often, in the press, and which is always in fashion, will also find this book 
interesting. 

In this moment we would like to be magicians and predict how many millions of 
fossil tracks are buried in the most diverse sediments, not yet discovered, throughout 
this immense country that is Brazil. In the great syneclises of the Amazon region and 
in the small intracratonic and marginal basins of northeast, maybe hidden in private
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collections or in the storage drawers of sleeping museums, they whisper: “Study 
me!” We would still like to have the joy, even if the age advances, of being able to 
say, during a field activity, as it has happened to us many times in life: “I am the 
first who has the privilege of seeing and touching this dinosaur footprint, which was 
buried and hidden from light so many million years ago”! 

This book also wants to be an open window on the “gondwanan” subcontinent, 
Brazil, sometimes little known and occasionally forgotten by the insiders. To the 
readers of this book, a grateful and cordial invitation to join us in the exciting 
adventure in the footsteps of dinosaurs of Brazil. 

Rio de Janeiro, Brazil 
Venice, Italy 

Ismar de Souza Carvalho 
Giuseppe Leonardi
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Chapter 1 
Dinosaur Footprints Throughout 
Mesozoic Basins in Brazil 

Ismar de Souza Carvalho 

1.1 Introduction 

The major paleogeographic configurations at the end of Paleozoic, related to global 
tectonics, induced environmental changes, including climate and distribution of land-
masses and seas. The worldwide transformations resulted in mass extinctions and 
provided new possibilities to the organism’s evolution. The influence of such changes 
on terrestrial ecosystems allowed the emergence of the dinosaurs during Triassic. 
This group is the result of ecological opportunities after the Permian-Triassic and 
a sustained long-term adaptive response to climatic shifts that lasted for ca. 57 Ma 
(Simões et al. 2022). 

Dinosaurs were rare and geographically restricted during the first steps of their 
diversification in Late Triassic and the extinction of co-occurring groups such as 
aetosaurs, rauisuchians, and non-mammalian therapsids (Benton 1983; Brusatte et al. 
2008; Langer and Godoy 2022; Langer et al. 2010; Dunne et al. 2023). Changes in the 
global climate played an important role in the dinosaur’s distribution throughout the 
Mesozoic, especially during Triassic and the Triassic to Jurassic transition (Tucker 
and Benton 1982; Benton 1983; Whiteside et al. 2015; Brusatte et al. 2008; Olsen  
et al. 2022). After the end-Triassic mass extinction event they presented a wider 
distribution and greater abundance, an opportunistic expansion model (Dunne et al. 
2023), in which a Triassic-Jurassic climatic crisis enabled their global abundance 
(Dunne et al. 2023). Part of this history is possible to observe from the fossils and 
ichnofossils found in the Brazilian sedimentary basins, that include large syneclises 
and rift basins throughout Mesozoic.

I. S. Carvalho (B) 
CCMN/IGEO, Departamento de Geologia, Universidade Federal do Rio de Janeiro, 21.910-200 
Cidade Universitária, Ilha do Fundão, Rio de Janeiro, Estado do Rio de Janeiro, Brazil 
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2 I. S. Carvalho

During the end of Mesozoic, the tectonic events linked to the Gondwana break-up 
caused a new geographic position of the South American continent. Throughout an 
innovative cycle of great changes, occurred many extinction and diversification events 
of the flora and fauna as a response to the environmental transfigurations (Bittencourt 
and Langer 2011; Bronzati et al. 2015; Dunhill et al. 2016; Gorscak and O’Connor 
2016). Concerning the Southern hemisphere, the South Atlantic origin has driven 
deep modifications in climate, geographic configuration, distribution of land and seas 
(Arai 2014a, b) with a direct influence in the biota, which were deeply modified by 
the South Atlantic tectonic scenarios. Nevertheless, in spite of the wide distribution 
in the Brazilian intracratonic and marginal sedimentary basins, the genesis of rocks 
originated in continental environments and the diversity of their fossils are poorly 
understood. 

The dinosaur tracks are important elements to the reconstruction of terrestrial and 
coastal environments improving paleoenvironmental interpretation and the knowl-
edge of the biota diversity. An overview of the spatial and temporal changes in the 
environments during the Mesozoic are important to understand the evolution and 
territorial distribution of the dinosaurs, improving the data obtained from fossils. 
Footprints are temporal markers of subaerial surfaces throughout the Mesozoic 
basins, recording cyclical changes in the environmental conditions during the depo-
sition. They are produced in an exposed substrate or in a flooded area, resulting 
in distinct patterns of tracks. If there is a waterlogged substrate there will occur 
liquefaction of the sediments and local deformation, or in the case of more cohesive 
sediments, the morphological aspects of the footprint will be recorded, including 
features such as pads and claws, which enable the knowledge of the trackmaker. 
Besides behavioral insights into the trackmaker’s biology, substrate properties, and 
environmental factors, footprints are also an important tool for the reconstruction of 
the terrestrial ecosystems during the Gondwanan Mesozoic throughout the Brazilian 
territory. 

1.2 Geological Context 

Preservation of animal footprints in the fossil record is strongly dependent on tapho-
nomic processes, although it is the grain size and the sedimentation regime that 
determines if preservation will take place and if a footprint will be incorporated 
into the sedimentary record. The possibility of preservation is minimal during long-
lasting periods of exposure without any sedimentation, and preservation is favored 
by rapid and significant sedimentation events. Thus, footprints are most commonly 
preserved in environments of cyclic sedimentation (Lockley 1991; Carvalho and 
Leonardi 2021; Carvalho et al. 2021a). 

Dinosaur footprints and trackways are found in many sedimentary basins 
throughout the Brazilian Mesozoic. The basin’s classification of sedimentary areas 
in Brazil is grouped in two wide groups of intracratonic (syneclises) and rift
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Fig. 1.1 Brazilian sedimentary basins with the large intracratonic (syneclises) and the rift basins 
(modified from Lucchesi 1998) 

basins (Fig. 1.1). The main intracratonic basins are Paraná, Parecis, Sanfrancis-
cana, Parnaíba and Amazonas basin whose geological history spans from Paleo-
zoic to Cenozoic in a syneclise tectonic context, although initially developed on 
Cambro-Ordovician rift systems (Toczeck et al. 2019). During Mesozoic the South 
Atlantic opening created new basins in the present Atlantic margin and in the interior 
Proterozoic belts. 

1.2.1 Paraná Basin 

The Paraná Basin records a span time of sedimentation (Fig. 1.2) throughout most 
all of the Phanerozoic (Henrique-Pinto et al. 2021). It is a sag-type intracratonic 
depression developed on the South American platform covering an area of around 1.4 
million km2 (Milani 1992; Milani and Ramos 1998; Milani and Zalán 1999). Milani 
et al. (2007) divided the Paraná Basin into six supersequences: the Rio Ivaí (Sandbian-
Aeronian, 455–438 Ma), Paraná (Pridoli-Famennian, 420–360 Ma), Gondwana I 
(Pennsylvanian–Lower Triassic, 323–247 Ma), Gondwana II (Anisian–Norian, 247– 
208 Ma), Gondwana III (Upper Jurassic–Berriasian, 149–139 Ma) and Bauru-Caiuá 
(Turonian–Maastrichtian, 93–66 Ma).
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Fig. 1.2 Simplified 
stratigraphic chart of the 
Paraná Basin (modified from 
Milani et al. 2007; Teramoto 
et al. 2020) and occurrences 
of dinosaur footprints and 
trackways 

The last three upper supersequences of Milani et al. (2007) are characterized 
by continental sedimentary rocks. The exclusive Triassic sedimentation is recorded 
with the Rosário do Sul Group (Gondwana II) followed by the Gondwana III-cycle 
(Henrique-Pinto et al. 2021). In the Carnian deposits of Santa Maria Formation 
(Rosário do Sul Group) there are dinosaur footprints (Fig. 1.3) interpreted as done 
by theropod and prosauropod trackmakers (Silva et al. 2007, 2008). Also in the 
Rio Grande do Sul State, during the Late Jurassic, there are footprints in sand bars 
of aeolian and fluvial deposits interpreted as ornithopod, theropod and sauropod 
trackmakers (Guará Formation, Francischini et al. 2015), accumulated in a semi-
arid climate (Scherer and Lavina 2005, 2006). A correlated deposit is the Pirambóia 
Formation (São Paulo State), a Late Jurassic fluvial-aeolian unit, in which dinosaur 
footprints in cross section were recognized in wet interdune deposits (Christofo-
letti et al. 2021). A more arid climate during the last stages of Upper Jurassic and
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Lower Cretaceous enable the establishment of extensive field dunes covering all 
the basin (Botucatu Formation, São Bento Group), where dinosaur tracks occur in 
aeolian dunes of the Botucatu paleodesert (Fernandes and Carvalho 2007; Leonardi 
et al. 2007). These deposits are coeval with the Early Cretaceous magmatic activity 
(Scherer 2000, 2002; Scherer et al. 2002; Brückmann et al. 2014) grouped as Serra 
Geral Formation (Mizusaki and Thomaz Filho 2004) or Serra Geral Group (Rossetti 
et al. 2018). 

The upper continental sedimentation of the Bauru Supersequence (Bauru and 
Caiuá groups) is a post-volcanic section accumulated in the flexural depression loaded 
by the Serra Geral Group (Milani and De Wit 2008; Henrique-Pinto et al. 2021). There 
is a very distinct basin area and change of the depocenters when compared with the 
Paraná Basin. Then, this supersequence is considered to encompass other basin, the

Fig. 1.3 a Triassic footprints from Rosário do Sul Group (Caturrita Formation, Norian, Paraná 
Basin). a Dinoturbation in a sandstone bedding plane at Faxinal do Soturno, Rio Grande do Sul 
State; b a theropod footprint. Photograph b by Michel Godoy 
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Bauru Basin, covering an area of approximately 379,362 km2 (Menegazzo et al. 
2016). This basin includes a large area of Paraná, São Paulo, Mato Grosso, Mato 
Grosso do Sul, Goiás, and Minas Gerais states, as well as a part of Paraguay with 
sedimentation from the Turonian until the Maastrichtian, in semi-arid conditions 
(Batezelli 2010, 2017; Dias-Brito et al. 2001; Arai and Fernandes 2023). The Bauru 
Basin developed in the back-bulge province of a retroarc foreland system in response 
to Andean orogenic events with supracrustal load (Menegazzo et al. 2016). There is 
one reference of an isolated tridactyl footprint in the Maastrichtian deposits (Bauru 
Group, Marília Formation) of this basin (Riff et al. 2018) and few footprints and 
trackways in the Caiuá Group (Leonardi 1977; Fernandes et al. 2008). 

1.2.2 Parecis Basin 

It is located in the central-west region of Brazil, in the southwest sector of the Amazon 
Craton. During the Early Paleozoic, the Amazon region was affected by an exten-
sional event, when a system of intracontinental rifts was established (Siqueira 1989). 
A syneclise was then developed over this Lower Paleozoic rift system (Pedreira and 
Bahia 2000). Part of the Silurian and Devonian history of the Parecis Basin is related 
to the Paraná Basin. The Mesozoic deposits are linked to an extensional event (Lower 
Jurassic), connected to the separation between South America and Africa. There are 
sandstones (Rio Ávila Formation), interpreted as deposition in aeolian environments, 
followed by basaltic flows with approximately 198 Ma (Marzolli et al. 1999). The 
Cretaceous Supersequence (Parecis Formation) is composed of conglomerates and 
sandstones, deposited in fluvial and aeolian environments (Pedreira da Silva et al. 
2003). So far, no record of fossil footprints has been found in the Mesozoic deposits 
of this basin. 

1.2.3 Sanfranciscana Basin 

The Sanfranciscana Basin is a 220,000 km2 syneclise basin (Fig. 1.4) established 
in the São Francisco Craton divided in two sub basins: Abaeté (south) and Urucuia 
(north). It is located in central-eastern Brazil (Minas Gerais, Goiás, Bahia, Tocantins, 
Piauí and Maranhão states), oriented in the N–S direction with approximately 
1,100 km in length and 200 km in width (Cabral et al. 2021).

The sedimentary successions of Sanfranciscana Basin include the Santa Fé 
(Permian-Carboniferous), Areado (Lower Cretaceous), Mata da Corda (Upper Creta-
ceous) and Urucuia groups (Campos and Dardenne 1997a, b; Sgarbi  2000; Sgarbi  
et al. 2001, 2004). 

The oldest sedimentary succession is the Santa Fé Group deposited during Late 
Carboniferous and Permian. The deposits are divided into Floresta (conglomerates 
and coarse sandstones) and Tabuleiro (mudstones, shales, siltstones and sandstones)
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Fig. 1.4 Stratigraphic chart of Sanfranciscana Basin (modified from Carmo et al. 2004; Leite and 
Carmo 2021) and occurrence of dinosaur footprints and trackways

formations. It is a glaciogenic sequence that represents a gondwanan glaciation record 
(Campos and Dardenne 1997a). 

The Lower Cretaceous Areado Group (Berriasian-Aptian) comprises the Abaeté, 
Quiricó, and Três Barras formations. The Abaeté Formation (up to 30 m thickness) 
is composed of matrix-supported and clast-supported conglomerates interpreted as 
deposited by braided rivers and alluvial fans (Campos and Dardenne 1997a). The 
Quiricó Formation (up to 100 m thickness) are constituted of fine-grained sedi-
ments, including shales, siltstones and fine grained siltstones with some levels of 
evaporates, that record a lacustrine sedimentation (Campos and Dardenne 1997a, b; 
Mescolotti et al. 2019). The ostracod data and palynologic content of the Quiricó 
Formation indicate a Barremian to Aptian age (Arai et al. 1995; Carmo et al. 2004). 
The Três Barras Formation (maximum thickness of 150 m) is mainly sandstones, with 
conglomerates and fine-grained siltstones and shales (Campos and Dardenne 1997a). 
Mescolotti et al. (2019) recognized within Três Barras Formation an unconformity 
(at least Cenomanian to Coniacian) separating the sedimentary succession into a 
lower (wet aeolian system) and an upper stratigraphic unit (dry eolian system). This 
is a record of the desertification events in the interior of southeast Brazil during the 
Cretaceous revealing prevailing winds from northeast, validating models of global 
paleo-circulation during the Cretaceous in Gondwana (Mescolotti et al. 2019). There 
was also the deposition in fluvial and deltaic environments. 

The paleoclimate in the Sanfranciscana Basin during the Lower Cretaceous 
(Berriasian-Aptian) is interpreted as in the context of a tropical-equatorial hot arid 
belts (Skelton et al. 2003). Despite this basin is in the interior of Gondwana Super-
continent there are deposits of shallow lakes (Quiricó Formation) with the signs of a
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wide biota represented by palynomorphs, gymnosperms and angiosperms, annelids, 
insects, ostracods, spinicaudatans, elasmobranchs, actinopterygians, coelacanthi-
forms and dinosaurs (Barbosa 1965; Duarte 1968; Santos 1971; Lima  1979; Arai  
et al. 1995; Duarte 1997; Carvalho and Kattah 1998; Delício et al. 1998; Carmo et al. 
2004; Gallego and Martins-Neto 2006; Carvalho and Maisey 2008; Zaher et al. 2011, 
2020; Leite et al. 2018; Fragoso et al. 2019; Brito et al. 2020; Bittencourt et al. 2015, 
2018; Ribeiro et al. 2018; Coimbra  2020; Carvalho and Santucci 2021). The exis-
tence of shallow lake environments points to more humid conditions on the southern 
edge of the arid belt, between 20° and 30° latitude at south (Mescolotti et al. 2019; 
Nascimento et al. 2022). The dinosaur footprints and trackways of Sanfranciscana 
Basin occur into the lower portion of the Três Barras Formation. This lower succes-
sion is interpreted as moist aeolian systems. Then the dinosaur footprints are settled 
in an environment with more humid conditions probably related to the Quiricó lakes. 

The Mata da Corda Group comprises volcanic alkaline rocks (80 Ma U–Pb 
average isotopic ages) that overlain the deposits of the Areado Group (Sgarbi et al. 
2004). It includes the Patos (alkaline volcanic rocks) and Capacete (epiclastic sedi-
ments) formations. The Urucuia Group (Upper Cretaceous) is a 200-m-thick unit 
and covers an area of approximately 76,000 km2 (Campos and Dardenne 1997a), 
composed of sandstones, divided into Posse and Serra das Araras formations. This 
unit is interpreted as dune field deposits of dry aeolian systems (Mescolotti et al. 
2019) followed by an upper succession of fluvial sediments deposited by sheet flows 
(Spigolon and Alvarenga 2002). The last lithostratigraphic unit is the Chapadão 
Group, a Quaternary unit that represents the recent sandy, unconsolidated, covers of 
talus, residual or alluvium origin (Campos and Dardenne 1997a). 

1.2.4 Parnaíba Basin 

The Parnaíba Basin is a large Paleozoic syneclise in northeastern Brazil, located 
partially in Tocantins, Ceará, Piauí, Maranhão and Pará states (Fig. 1.5). It is a sag 
basin up to 3.5 km thick, 1,000 km long and 970 km wide, nearly circular-shaped area 
(Cordani et al. 1984). The Precambrian crystalline basement comprises a complex 
lithostructural and tectonic framework formed during the Neoproterozoic–Eopale-
ozoic Brasilian–Pan African orogenic collage (Almeida et al. 2000; Brito Neves 
and Fuck 2013; Castro et al. 2013; Porto et al. 2022). This area presents 600,000 
km2 and due the polycyclic tectonic evolution and distinctive sedimentation, Góes 
(1995) proposed the term Parnaíba Province, an area with four depositional centers 
(Góes and Feijó 1994): Parnaíba, Alpercatas, Grajaú and Espigão-Mestre basins. 
The Parnaíba Basin is filled with Ordovician to Early Triassic sediments, mostly 
of marine, but also fluvial, deltaic and desert environments. The Alpercatas Basin 
(Jurassic to Cretaceous age) encompasses fluvial-lacustrine and aeolian sedimen-
tary rocks alternated between basaltic flows. The Grajaú and Espigão Mestre basins, 
both of Cretaceous age are filled with rocks deposited in closed marine environ-
ments (Grajaú Basin) and aeolian sandstones (Espigão Mestre Basin) of the northern
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Fig. 1.5 Geotectonic units of the Parnaíba Province, which includes distinct depositional areas 
(Pedreira da Silva et al. 2003) 

extension of the Urucuia domain of the Sanfranciscana Basin (Pedreira da Silva et al. 
2003). 

The chronostratigraphy and lithostratigraphy of the Parnaíba Basin (Fig. 1.6) 
present as the oldest Paleozoic deposits a pre-Silurian (Cambro-Ordovician) 
sequence filling up graben-like structures, attributed to the Jaibaras Group (Oliveira 
and Mohriak 2003; Cerri et al. 2020). After this first deposition there are 
three depositional supersequences (Pedreira da Silva et al. 2003): Silurian (Serra 
Grande Group), Devonian-Carboniferous (Canindé Group) and Carboniferous-
Triassic (Balsas Group). The Serra Grande Group (Ipu, Tianguá and Jaicós forma-
tions) comprises conglomerates, sandstones and shales. The deposits of this unit 
are interpreted as fluvial and glacial, fluvial and marine deposits of Silurian age. 
The Canindé Group (Itaim, Pimenteiras, Cabeças, Longá and Poti formations) is 
composed of sandstones and shales of marine, glacial and fluvial environments. 
The Carboniferous-Triassic is the Balsas Group (Piauí, Pedra-de-Fogo, Motuca and 
Sambaíba formations), composed of sandstones, shales, carbonates and stromatolites 
interpreted as aeolian dunes and tidal flats (Santos and Carvalho 2009).
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Fig. 1.6 Stratigraphic chart 
of Parnaíba Basin (adapted 
from Vaz et al. 2007; Araújo  
2017; Pereira et al. 2021) 
and occurrences of dinosaur 
footprints and trackways 

During the Mesozoic, the main regional tectonic elements were the Xambioá (E– 
W) Arch, located in the center of the basin, and the Ferrer–Urbano Santos Arch 
delimiting the small marginal basins associated with the opening of the Equatorial 
South Atlantic (Araújo 2017). Throughout the Jurassic and Cretaceous, magma flows 
and diabase dykes indicate the effects of the break-up of Pangea (Sardinha Formation) 
and Gondwana (Mosquito Formation). 

The Alpercatas Basin is a rift system with the Jurassic supersequence of the 
Mearim Group (Pastos Bons and Corda formations) limited by the basalts (Góes and 
Feijó 1994) of Mosquito (Jurassic) and Sardinha (Lower Cretaceous) formations. 
The Pastos Bons Formation are a succession of shales and sandstones interpreted as 
fluvial and aeolian environments. The Corda Formation is bimodal sandstones, with 
some mudstone levels, is interpreted as a desert environment.



1 Dinosaur Footprints Throughout Mesozoic Basins in Brazil 11

The Grajaú Basin (Góes and Rossetti 2001) is isolated from the São Luís Basin 
by the Ferrer-Urbano Santos structural arch. This basin is filled up by the Creta-
ceous supersequence (Aptian-Albian), including the Codó, Grajaú and Itapecuru 
formations (Rossetti and Truckenbrodt 1997; Rossetti 2001). The Grajaú Formation 
deposits are sandstones intercalated with the shales, carbonates and evaporites of 
the Codó Formation, interpreted as fluvial and lagoon environments. The Itapecuru 
Formation is a succession of sandstones, shales and mudstones interpreted as fluvial 
and deltaic deposits. The Espigão-Mestre Basin is located in the southern portion of 
the Parnaíba Province and it is the north area of the Urucuia sub-basin of the Sanfran-
ciscana Basin (Pedreira da Silva et al. 2003). There are sandstones interpreted as 
aeolian deposits. 

The footprints and dinosaur tracks found in the Parnaíba Province (or in a more 
common sense, Parnaíba Basin) are located in the Parnaíba, Espigão-Mestre and 
Grajaú basins. In the Parnaíba Basin - Sambaíba Formation, a dubious Triassic 
unit, there are many isolated theropod footprints (Fortaleza dos Nogueira locality, 
Maranhão State) identified by Assis et al. (2010). In the Espigão-Mestre Basin there 
are seven sauropod trackways (Leonardi 1980, 1994; De Valais et al. 2015; Lopes 
et al. 2021) in the Corda Formation (Barremian), São Domingos county, Itaguatins 
locality, Tocantins State (Fig. 1.7). In the Grajaú Basin is found an isolated footprint 
in the Itapecuru Formation (Aptian), identified as a Caririchnium footprint (Menezes 
et al. 2019), Itapecuru River, Maranhão State.

1.2.5 Amazonas Basin 

The Amazon region comprises many sedimentary basins grouped as the Amazonas 
Province, in which the larger basins are Acre, Solimões, Alto Tapajós, Amazonas and 
Marajó. These basins are isolated by structural arches and throughout their geological 
history they present some episodes of environmental connections, especially during 
the Devonian marine transgressions and later through the Cenozoic fluvial systems. 

The most complete stratigraphic succession occurs in the Amazonas Basin. It 
presents an area of 515,000 km2 with 5,000 m thickness (Cunha et al. 1994) over-
lapping Precambrian magmatic and metamorphic rocks (Fig. 1.8). The oldest Paleo-
zoic deposits are conglomerates and sandstones, probably Cambrian-Ordovician— 
the Prosperança Formation. Subsequently, the Ordovician-Devonian Supersequence 
(Trombetas Group) presents clastic rocks deposited in marine environments (Cunha 
et al. 1994). Follow the deposition of the Devonian-Carboniferous Supersequence, 
comprising the Urupadi and Curuá groups, which represent fluvial and deltaic envi-
ronments and also include a glacial interval. The Carboniferous-Permian Superse-
quence (Tapajós Group) includes both continental and restricted marine environ-
ments. At the beginning of the Jurassic occurred extensive basaltic magmatism as 
part of the CAMP Province—Central Atlantic Magmatic Province (Marzolli et al. 
1999). The final sedimentation cycle in the Amazonas Basin are two continental 
sequences: Upper Cretaceous (Alter do Chão Formation) and Cenozoic (Solimões
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Fig. 1.7 a Theropod footprint from the Sambaíba Formation (Parnaíba Basin), a probable Late 
Triassic-Jurassic lithostratigraphic unit. Fortaleza dos Nogueiras locality, Maranhão State. Photo-
graph by Rafael Matos Lindoso; scale bar: 3 cm. b Three sauropod trackways from the Corda 
Formation (Parnaíba Basin), Lower Cretaceous. Itaguatins locality, Tocantins State. Photograph by 
Giuseppe Leonardi

and Içá formations) sequences, deposited in the context of fluvial and lacustrine 
environments (Mendes et al. 2012).

The Acre Basin is in the same geological context of Amazonas Basin and they 
share a common Paleozoic history. It is a retroarch basin of the Andes mountain 
range (Milani and Thomaz Filho 2000). The Jurassic Supersequence (Juruá-Mirim 
Formation) is constituted by sandstones, evaporites and basalt flows in the context 
of terrestrial environments. The Cretaceous Supersequence (Moa, Rio Azul, Divisor 
and Ramón formations) presents sandstones and shales deposited in fluvial and lakes 
environments. 

It was not found until now any dinosaur footprint in the Mesozoic deposits of the 
Amazon Province (Acre, Solimões, Alto Tapajós, Amazonas and Marajó basins). 
Despite there are Jurassic and Cretaceous outcrops in the Amazonas and Acre basins, 
there are few geological studies in this region and no data concerning dinosaur 
footprints.
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Fig. 1.8 Stratigraphic chart 
of the Amazonas Basin 
(adapted from Cunha et al. 
1994, 2007). Although the 
wide area of this basin there 
is no occurrences of dinosaur 
footprints and trackways

1.2.6 Rift Basins 

The Brazilian rift basins are related to the tectonic events during the breakup of 
Gondwana. During the Late Jurassic, intense tectonic activity fragmented the crust 
and created small half grabens with a great accumulation of sediments. Small lakes 
that captured the drainage network (Machado et al. 1990) were the main conti-
nental environments, with an eventual physical linkage, where the dinosaur footprints 
are found. These occurrences are not synchronous and did not coincide temporally 
throughout the Cretaceous, as the beginning of the South Atlantic occurred during 
three diachronous tectono-sedimentary domains (Popoff 1988): Austral (southern), 
tropical (midlatitude), and equatorial (northern). Then, there are many small inte-
rior basins in Northeastern Brazil (tropical tectonic domain), bordering the Atlantic 
margin (tropical and equatorial tectonic domain), and also in the Amazon region 
(equatorial tectonic domain). The outcrops indicate deposition in a wide variety of 
geological settings, including fluvial, lacustrine and seashore environments.
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The majority of ichnosites are found in the Early Cretaceous intracontinental 
basins of Sousa, Triunfo (both included in the Rio do Peixe basins), Lima Campos, 
Malhada Vermelha and Araripe. In the marginal Atlantic basins there are few occur-
rences, generally cross-section and isolated footprints. The exception is the São Luís 
Basin in the equatorial margin, where a large number of theropod, sauropod and 
ornithopod footprints are distributed in six ichnosites located in the São Luís and 
Alcântara counties, Maranhão State. 

1.2.6.1 Intracontinental Basins of Northeast Brazil 

These basins are intracratonic areas (grabens and half-grabens) in which the sedimen-
tation was controlled by the reactivation of Precambrian tectonic structures during 
the first steps of the South America and Africa drifting (Ponte 1992; Mabesoone 
1994; Valença et al. 2003). The region of the Precambrian basement (Meso- and 
Neo-Proterozoic), where they are found, is known as Borborema Province (Santos 
and Brito Neves 1984). 

The Borborema Province shows diverse tectonic, metamorphic, and magmatic 
events that are interpreted to belong to a larger Precambrian paleocontinent expanding 
into Africa (Trompette et al. 1993). This area was periodically affected by the 
formation of intracontinental rifts (Matos 1992; Córdoba et al. 2008) and the reacti-
vated fault movements within the ancient Precambrian fault lines (E-W and SW–NE 
oriented) created several sedimentary basins (Fig. 1.9). 

These basins lie in the western of Paraíba, Rio Grande do Norte, Piauí, Pernam-
buco, and in the southern Ceará states, Northeast Brazil. There is a diversity of

Fig. 1.9 Location map of the interior rift basins in the Northeast Brazil (modified from Carvalho 
et al. 2013a, b) 
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Fig. 1.10 Stratigraphic chart of Rio do Peixe basins. Santa Helena Group (PI—Pilões Formation; 
TR—Triunfo Formation) and Rio do Peixe Group (AN—Antenor Navarro Formation; SO—Sousa 
Formation; RP—Rio Piranhas Formation). 2021 Modified from Rapozo et al. (2021)

vertebrate and invertebrate ichnofossils, especially Early Cretaceous dinosaur foot-
prints in the Rio do Peixe (Leonardi 1979a, b, 1989; Carvalho  1996a; Carvalho et al. 
1993, 1995, Carvalho and Leonardi 2021, 2022; Leonardi and Carvalho 2021) and 
Araripe basin’s (Carvalho 2004; Carvalho et al. 1994a, b, 2021a, b). During the 
Barremian-Berriasian in the Rio do Peixe basins (Fig. 1.10), the dinosaur footprints 
(Figs. 1.11 and 1.12) occur in the Rio do Peixe Group, that includes the Antenor 
Navarro (alluvial fans/braided channels), Sousa (shallow lacustrine/floodplain), and 
Rio Piranhas (alluvial fans/braided channels) formations (Srivastava and Carvalho 
2004). In the ?Barremian, Aptian and Cenomanian of Araripe Basin they are found in 
the Mauriti (fluvial), Rio da Batateira (deltaic/floodplain), Crato (alkaline lake) and 
Exu formations (Viana et al. 1993; Carvalho  2000a, b, 2004; Carvalho et al. 2021a, 
b). 

1.2.6.2 Marginal Atlantic Basins 

The south to north breakup of Western Gondwana started in the southern region of 
South America during the Late Jurassic reaching the equatorial margin by late Aptian-
early Albian. In general there are four megasequences of sedimentation (Fig. 1.13)
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Fig. 1.11 Sousaichnium 
pricei, an ornithopod 
trackway from the Sousa 
Basin (Sousa Formation, 
Sousa Basin) preserved in a 
floodplain succession.

controlled by the evolution of the rifting events (Cainelli and Mohriak 1999). The 
southern basins, such as Pelotas, Santos, Campos and Espírito Santo are offshore 
regions and there are no outcrops of the Mesozoic successions. The Recôncavo-
Tucano-Jatobá is an aborted rift system filled by the pre-rift and continental megase-
quences, in which there are some dinosaur footprints in the continental deposits of 
the pre-rift (Late Jurassic) and continental megasequences (Aptian). They are found 
as cross section footprints in the Aliança and Sergi formations (Recôncavo Basin, 
Carvalho and Borghi 2008) and as isolated tridactyl footprints in the Tucano Basin 
(São Sebastião Formation, Dantas et al. 2019).

The South Atlantic marginal basins of Sergipe-Alagoas and Potiguar present 
outcrops of the rifting evolution events. This allows the observation of bedding planes 
with dinosaur footprints in the Aptian succession of Sergipe-Alagoas Basin (Maceió 
Formation, Carvalho and Souza-Lima 2008) and the Aptian?–Cenomanian of the 
Potiguar Basin (Açu Formation, Leonardi et al. 2021). 

In the Equatorial Atlantic margin, the dinosaur footprints of São Luís Basin 
occur in Cenomanian fine-grained quartz’s sandstones of the Alcântara Formation 
(Fig. 1.14). The tracksites are located in the early equatorial seashore of the Atlantic 
Ocean, in the environmental setting of an estuary that occupied a low gradient coastal
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Fig. 1.12 A theropod 
footprint from Sousa Basin 
(Antenor Navarro Formation 
) preserved in reddish 
sandstones of alluvial fan 
deposits from Serrote do 
Letreiro, Sousa County 
(Paraíba State). Scale bar: 
4 cm

plain, under a dry and hot climate. Distinctive dinosaur communities are found in 
these environments (Carvalho 1995, 2001; Carvalho and Pedrão 1998).

1.2.6.3 Tacutu Basin 

The Tacutu Basin is a NE-SW asymmetric graben system (4,500 km2), with an 
extension of 300 km and up to 50 km wide, located in the borders of Brazil and 
Guyana Republic in the Amazon region. The sedimentary succession (Pedreira da 
Silva et al. 2003; Castro et al. 2021) comprises an initial pre-rift Jurassic Superse-
quence (Apoteri and Manari formations) with volcanic rocks and reddish siltstones 
of lacustrine environments (Eiras et al. 1994; Marzolli et al. 1999). Later, during a rift 
phase, there are fluvial, playa lake and deltaic deposition of evaporites, shales, sand-
stones and conglomerates (Rupununi and Pirara formations) followed by Cretaceous 
siltstones and sandstones (Tacutu and Serra do Tucano formations). Barros et al. 
(2023) reported dinosaur footprints in the Serra do Tucano Formation (Barremian-
Albian), probably in floodplain deposits. The brief description indicates that there 
are a large number of footprints interpreted as sauropod, ornithopod, theropod and 
thyreophoran trackmakers.
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Fig. 1.13 Stratigraphic 
columns of Mesozoic 
Brazilian marginal 
basins (Santos, Espírito 
Santo and Sergipe-Alagoas 
basins). The chart presents 
the local stages Dom João 
(Tithonian), Rio da Serra 
(Berriasian-lower 
Hauterivian), Aratu 
(Hauterivian-lower 
Barremian), Buracica (upper 
Barremian), Jiquiá (upper 
Barremian-lower Aptian) 
and Alagoas (upper Aptian). 
Modified from Cainelli and 
Mohriak (1999) and  
Menezes et al. (2016)

1.3 Paleogeographic and Paleoenvironmental Distribution 
of the Footprints 

In the Paraná Basin (South Brazil), the Triassic records (Rosário do Sul Group, 
Anisian–Norian, ~247–208 Ma) are reddish sandstones and shales from fluvial and 
lake deposits. There are many fossils of permineralized logs and a wide diversity 
of bone remains (Langer 2003; Ferigolo and Langer 2006; Bittencourt and Langer 
2011; Langer and Ferigolo 2013; Langer et al. 1999; Mestriner et al. 2023; Pacheco 
et al. 2019; Müller and Garcia 2023) and footprints (Silva et al. 2007, 2008) of the  
oldest dinosaurs. The prevailing climatic condition was hot and dry, with intermittent 
wet periods. Petrified logs indicate a subtropical to tropical climate, with irregular 
seasonality and short-term droughts, suggesting semi-arid conditions (Scaramuzza
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Fig. 1.14 Footprints from 
de Cenomanian (Alcântara 
Formation, São Luís Basin) 
preserved in a tidal flat 
environment at Ponta da 
Guia, São Luís County 
(Maranhão State)

dos Santos et al. 2023). A similar climate is also found during the Late Jurassic 
deposition of the Guará and Pirambóia formations (Francischini et al. 2015; Christo-
foletti et al. 2021). Sand bars, fluvial and interdune deposits accumulated in a semi-
arid climate (Scherer and Lavina 2005, 2006). From then on, a broad process of 
aridization occurred in the interior of the Gondwana. At the beginning of the Creta-
ceous, there was hyperarid conditions, resulting in a 1,300,000 km2 desert (Botucatu 
Paleodesert) covering the center-south of Brazil, as well as the west of Uruguay, 
east of Paraguay and northeast of Argentina (Almeida 1953; Bertolini et al. 2021). 
The origin of the Botucatu Paleodesert and even other large aeolian deposits, such as 
those in the Sanfranciscana Basin, resulted from the Pangea geographic configuration 
of the Late Permian. The distribution of continents, low sea level and atmospheric 
currents, resulted in vast aridity during almost all of the Mesozoic (Almeida and 
Carneiro 1998). This climate model was changed after the West Gondwana break 
up, during the Early Cretaceous. There were changes in the atmospheric circulation, 
humidity and temperature and, therefore, to the disappearance of this great desert. 

The deposits of this paleodesert are the sandstones of the Botucatu Formation, 
which overlap and are sometimes interspersed with the basalt flows of the Serra 
Geral Formation and the Caiuá Group (Leonardi 1977). They are interpreted as 
extensive dune fields and humid interdune areas, where the footprints of mammals, 
dinosaurs (Figs. 1.15 and 1.16) and small invertebrates were preserved (Leonardi 
1977; Leonardi and Carvalho 2002; Francischini et al. 2015). In the Rio Paraná 
Formation (Caiuá Group) there is an association of footprints of dinosaurs and small
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mammals preserved in aeolian sandstones, indicating animals adapted to aridity 
(Fernandes et al. 2008). 

At the end of the Jurassic and Early Cretaceous, an important event is the extru-
sion of basalts (ages between 127 and 137 million years, Brückmann et al. 2014) 
indicative of intense fissure eruptions (Serra Geral volcanism) associated with the 
South America and Africa drifting (Assine et al. 2004). The basalt flows (Serra Geral 
Formation) are interspersed with sandstones from the Botucatu Paleodesert (Scherer

Fig. 1.15 The geographic configuration of Gondwana resulted in hyperarid conditions originating 
a 1,300,000 km2 desert (Botucatu Paleodesert, Paraná Basin) where dinosaur footprints are found 
in dunes and interdune areas. a The arrow indicates a surface in a dune deposit of the Botucatu 
Formation with an ornithopod trackway; b an isolated theropod footprint in a flagstone of the 
Botucatu Formation. Scale bar: 3 cm. Both images from the São Bento Quarry, Araraquara County 
(São Paulo State). Photographs by Marcelo Adorna Fernandes
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Fig. 1.16 a Outcrop in the Catingueiro creek of the Lower Cretaceous aeolian sandstones of Caiuá 
Group (Bauru Basin); b theropod footprints in the Catingueiro creek, Cianorte County (Paraná 
State). Scale bar 5 cm. Photographs by Giuseppe Leonardi

2000, 2002; Scherer et al. 2002). Due to changes in the depocenters, after the Serra 
Geral volcanism, a new depositional setting was established named as Bauru Basin. 

In the Parnaíba Basin, the aridity was striking since the early Mesozoic. During 
the Triassic, deposition occurred mainly in lacustrine and aeolian environments. A 
wide area of reddish sandstones, with large cross stratifications (Sambaíba Forma-
tion), is interpreted as the deposition of aeolian dunes. At the end of the Triassic and 
Early Jurassic (approximately 202–200 Ma) there is a record of intense volcanism 
that reflects the breakup of Pangea and the birth of the Central Atlantic Ocean 
(Nogueira et al. 2021). Throughout the Cretaceous, continental environments domi-
nated, although at the end of the Early Cretaceous, there were marine ingressions 
related to the Brazilian equatorial margin opening. 

A major landmark of the Mesozoic is the opening of the Atlantic Ocean, with 
the definitive rupture of West Gondwana. This is the South Atlantic Event, which
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comprises a set of tectonic, sedimentary and magmatic events, from the Permian-
Triassic onwards. The spreading of the ocean floor occurred in three different 
moments (approximately 130 Ma, 113 Ma, and 110 Ma) starting from south to 
north, and reaching the Brazilian equatorial margin at the end of the Early Creta-
ceous (Chang et al. 1992; Matos 1992). Only after 110 million years ago there was 
a continuous and stable oceanic crust (Matos et al. 2021a, b). 

The structural lineaments of the Brazilian and Pan-African provinces were 
intensely reactivated, with expressive vertical movements. In the interior of the 
Borborema Province and along the current Brazilian continental margin there were 
crustal ruptures and the origin of new sedimentary basins (Pedreira da Silva et al. 
2003), such as the Rio do Peixe basins, in Northeast Brazil. On the continental margin, 
the tectonics controlled the phases of subsidence, sea level changes and sedimenta-
tion, with diverse environments in the course of the opening of the Atlantic Ocean 
(Chang and Kowsmann 1987; Petri 1987). 

Throughout the pre-rift events (syn-rift I, Upper Jurassic), a great depression 
known as the Afro-Brazilian Depression, allowed the accumulation of continental 
sediments from rivers and temporary lakes (Ponte 1972) and consequently a higher 
humidity in the continental interior. Along the borders of this depression, topographic 
barriers played an important role in reducing wind velocity from the southeast, 
establishing climatic zones that probably controlled the flora and fauna distribu-
tion (Golonka et al. 1994). Despite the fact that it dominated a semi-arid climate, the 
locally higher precipitation led to the growth of abundant vegetation, mainly along 
the northern margin of the Afro-Brazilian Depression (García and Wilbert 1994; Da  
Rosa and Garcia 2000). 

Later, there was a divergent movement between the South American and African 
plates, inducing a 3,500 km rift system on the present Brazilian continental margin. 
Thus, during the Early Cretaceous, alluvial fans, rivers and lakes were the main envi-
ronments in the rift basins (Guardado et al. 1989; Lima Filho et al. 1999; Mabesoone 
et al. 1979, 2000; Córdoba et al. 2008). Transitional environments occurred between 
the rift and the drift phases, ranging from continental to marine environments (upper 
Aptian-lower Albian). 

The current paleogeographical models demonstrate that despite the south to north 
tectonic opening, the first marine ingressions originated from the northern region, 
linked to the Tethys Sea (Azevedo 2004; Dias-Brito 1987, 2000; Arai  2009, 2014a, 
b, 2016; Tucker and Dias-Brito 2017; Araripe et al. 2022; Fauth et al. 2023; Lemos 
et al. 2023). Some sauropod dinosaurs from South America and Africa revealed 
that terrestrial connections persisted until about 100 million years ago (Calvo and 
Salgado 1996), but at the end of the Turonian (89.8 Ma, Late Cretaceous) dominated 
settled the open sea, approaching the conditions that still exist today. Hot weather 
were widespread, although there was probably a wide range of humidity (Petri 1983, 
1998; Lima  1983; Lima and Coelho 1987; Carvalho  1996b; Carvalho and Carvalho 
1990; Skelton 2003; Souza-Lima and Silva 2018; Degani-Schmidt et al. 2023) and 
marked climatic cycles in some regions (Gomes et al. 2021; Guerra-Sommer et al. 
2021a, b). A humidification process, changing from arid to a tropical climate, with 
the onset of the equatorial humid belt, took place due the origin of the Atlantic Ocean
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during the Gondwana breakup (Carvalho et al. 2022; Salgado-Campos et al. 2021, 
2022; Luft-Souza et al. 2022; Scaramuzza dos Santos et al. 2020, 2021, 2022, 2023; 
Dummann et al. 2023). 

The tectonic evolution of the Mesozoic rift basins appears to be a strong constraint 
on the distribution of sedimentary environments and, consequently, on the possibility 
of preservation of fossil footprints. In addition, the distribution of outcrops in the 
marginal basins represents a limitation for the number of dinosaur footprints in a 
time interval favorable to their frequency. 

1.4 Conclusions 

The distribution of dinosaur footprints through time and space in the Brazilian terri-
tory covers all the Mesozoic era in the intracratonic and marginal rift basins with 
distinct geological history. 

Since the Triassic (Carnian) of the Paraná Basin the first dinosaurs are recognized 
by their footprints, including theropods and prosauropods. The continental environ-
ments, including fluvial floodplains and lakes in an arid climate, were populated by a 
great number of the first dinosaur lineages. During almost all the Mesozoic, the land 
masses distribution, low stand eustatic level and atmospheric currents were respon-
sible for an arid climate with episodes of hyperaridity. In the Early Cretaceous, the 
paleogeographic setting allowed an extreme arid climate and the origin of the Botu-
catu Paleodesert. The trackmakers that lived in this environment showed specific 
adaptations to this environment. 

During the Gondwana breakup, the atmospheric circulation, humidity and temper-
ature changed following the ending of the Botucatu Paleodesert. Furthermore, 
new ecological spaces were available with the origin of the South Atlantic Ocean 
throughout the late Early Cretaceous. From this moment new groups of dinosaurs 
left their footprints in coastal environments during the early tectonic stages of the 
rift basins. 
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Chapter 2 
Triassic Tracks from Paraná Basin: The 
First Data on the Origin of Dinosauria 

Rafael Costa da Silva 

2.1 Introduction 

The Triassic period stands as a prominent epoch in Earth’s geological history, marked 
by deep global transformations that occurred at the end of the Paleozoic and persisted 
throughout the Mesozoic, ultimately leading to the establishment of the Cenozoic 
biotas. One of the most notable paleobiological events during the Triassic was the 
emergence of a variety of archosaur lineages and the appearance of the first dinosaurs. 

These significant events are magnificently preserved in the Triassic sequence of the 
Rosário do Sul Group, Paraná Basin, a globally renowned deposit that offers invalu-
able insights into the genesis of dinosaurs. This geological unit is widely acknowl-
edged for its exceptionally diverse fauna, featuring a wealth of osteological remains, 
including temnospondyl “amphibians”, archosauromorphs such as rhynchosaurs, 
“thecodonts” and dinosaurs, therapsids such as cynodonts and dicynodonts, and small 
tetrapods as procolophonids and rhynchocephalians (Holz and De Ros 2000). Partic-
ularly noteworthy is the exponential growth in the number of basal dinosaur taxa 
discovered in the Triassic of southern Brazil over the last decade (Cabreira et al. 
2011, 2016; Müller et al. 2018; Pretto et al. 2018; Pacheco et al. 2019; Marsola et al. 
2019; Müller 2021). 

The vast majority of this paleontological record within the Rosário do Sul Group 
comprises osteological evidence that has been studied for over a century. Only 
recently vertebrate footprints and tracks been discovered, including dinosaur ichno-
fossils dating back to the same period as their skeletal remains (Cargnin et al. 2001; 
Silva et al. 2007a, 2008a, b, c, 2012). While Triassic dinosaur footprints are relatively 
abundant worldwide, in Brazil, they are exclusively known within this geological unit, 
given that Triassic-age rocks are somewhat rare in Brazil and, when present, have been
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Fig. 2.1 Location of the Triassic dinosaur footprints ichnosites from Brazil (modified from Silva 
et al. 2008c, 2012). a Distribution of Triassic rocks in the Rio Grande do Sul State, Southern Brazil; 
b detailed view of the central region of the state; c detailed view of the “Quarta Colônia” region, 
with the dinosaur footprints ichnosites 

insufficiently studied, with no known occurrences of tetrapod fossils. The study of 
these fossil footprints provides invaluable data on diversity, functional morphology, 
behavior and ecological relationships of extant animals, as well as sedimentological 
characteristics of the substrate and paleoenvironmental aspects. Traditionally, fossil 
tracks have not been employed for biostratigraphic purposes, although they can serve 
as significant indicators in determining the age of successions when body fossils are 
absent, or as supplementary aids in refining age estimates when associated with them 
(Lucas 1998). In the case of the tracks from the Rosário do Sul Group, they offer 
valuable insights into the chronological context of the rocks (Fig. 2.1). 

2.2 Geological Context 

The Paraná Basin, one of the world’s largest intracratonic basins, extends laterally 
from the Central-West region of Brazil to Argentina, Uruguay, and Paraguay. This 
extensive basin is underlain by a crystalline basement and comprises a significant 
vertical extent, with sedimentary and igneous rocks spanning from the Late Ordovi-
cian to the Early Cretaceous (Milani et al. 2007). The geologic strata within the Paraná
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Basin represent the superposition of three distinct sequences, corresponding to the 
Ordovician-Devonian, Carboniferous-Triassic, and Jurassic-Cretaceous periods. 

The genesis of sediment deposition during the Triassic, where the earliest dinosaur 
tracks were preserved, traces back to earlier geological events. During the Permian 
period, the Paraná Basin was covered by a substantial body of water, character-
ized by marine systems and carbonate sedimentation. Towards the Permian-Triassic 
boundary, sedimentation displayed regressive tendencies, indicating a pronounced 
shift towards continental conditions during this phase. Over time, the extensive water 
body gradually receded, predominantly influenced by tides (Gama 1979; Milani 
et al. 2007). Towards the later stages of this period, lacustrine and fluvial deposi-
tional systems emerged, followed by the establishment of fluvial-eolian systems in 
restricted regions of the basin during the Early Triassic (Gama 1979; Milani et al. 
2007). The onset of the Triassic was marked by a significant tectonic event, known 
as the La Ventana Orogeny, which occurred in the southern part of Gondwana. This 
event led to uplifts in various sectors of the basin, along with intermittent depositional 
hiatuses. 

During the Triassic, fluvial-eolian systems associated with shallow and localized 
lakes formed in the southern region, leaving a record known as the Rosário do Sul 
Group (Andreis et al. 1980; Scherer et al. 2000). Subsequently, the initial movements 
related to the Gondwana fragmentation caused the uplift of some basin’s portions, 
leading to an erosive stage that continued until the mid-Jurassic (Milani et al. 2007). 

The Rosário do Sul Group is traditionally divided into the Pirambóia, Sanga do 
Cabral, Santa Maria, and Caturrita formations (Andreis et al. 1980), with the latter 
three restricted to the Rio Grande do Sul State in the southern region of Brazil. The 
status of the Pirambóia Formation is currently under discussion and its age may 
be younger (Christofoletti et al. 2021). Dinosaur tracks occur in the Santa Maria 
and Caturrita formations. Traditionally, the Santa Maria Formation is interpreted as 
deposited by a continental fluvio-lacustrine system (Andreis et al. 1980; Zerfass et al. 
2003; Da-Rosa  2005) and is divided into the Passo das Tropas and Alemoa members 
(Fig. 2.2). The lowermost member (Passo das Tropas) consists of conglomerates 
and coarse sandstones, representing an interlaced, ephemeral, high-energy fluvial 
system (Zerfass et al. 2003). The upper member, Alemoa, is characterized by reddish 
mudstones, massive or finely laminated, interbedded with siltstones and fine sand-
stones, calcrete levels, and paleosols (Zerfass et al. 2003; Da-Rosa  2005). At the top 
of the unit, the mudstones are interbedded with tabular to lenticular, fine to medium-
grained whitish sandstones, displaying small to medium-sized cross-bedding with 
intraclasts.

The Caturrita Formation comprises conglomeratic to fine sandstones with planar 
or trough cross-bedding and horizontal stratification, along with massive or fine 
laminated siltstones and sandy siltstones (Andreis et al. 1980). These sedimentary 
rocks are interpreted as meandering river deposits in an alluvial plain, featuring 
lateral associations of paleosol levels with multiepisodic sandy facies from fluvial 
channels. The prevailing climate during this period is believed to have been warm 
and humid (Andreis et al. 1980). The Caturrita Formation has been subdivided into 
two parts based on distinct fossil assemblages, with the lower part considered Norian
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Fig. 2.2 Compound section of the Triassic rocks from southern Brazil and detailed sections of 
the dinosaur footprints ichnosites. The geochronological data, lithostratigraphic unit’s limits and 
nomenclature were based in Andreis et al. (1980), Scherer et al. (2000), Zerfass et al. (2003), 
Da-Rosa (2005), Silva et al. (2008c, 2012),  and Horn et al.  (2014, 2018)
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due to its vertebrate fauna content (Barberena 1977; Schultz et al. 2000; Rubert and 
Schultz 2004) and the uppermost part (“Arenito Mata”) likely Rhaetian due to the 
presence of allochthonous Araucarioxylon wood logs (Guerra-Sommer and Cazzulo 
Klepzig 2000; Faccini 2007). 

Triassic sedimentation in the Paraná Basin predominantly occurred within the 
temporal interval between the Lower Triassic and Upper Triassic, as defined by 
Milani (2000) within the context of the Gondwana I and Gondwana II superse-
quences. These deposits encompass fluvio-lacustrine and eolian sediments, including 
the Sanga do Cabral, Santa Maria, and Caturrita formations. However, the age of 
the Pirambóia Formation remains controversial, with some researchers suggesting 
it is Triassic (e.g. Scherer et al. 2000; Milani et al. 2007) or even Jurassic age 
(Christofoletti et al. 2021). 

The Triassic rocks of Rio Grande do Sul have been studied by Zerfass et al. (2003) 
within the framework of sequence stratigraphy and categorized into two second-order 
depositional sequences: the Sanga do Cabral supersequence (equivalent to the Sanga 
do Cabral Formation) and the Santa Maria supersequence (equivalent to the Santa 
Maria, Caturrita formations, and the Arenito Mata). The former likely encompasses 
sediments from ephemeral and low-sinuosity fluvial systems during the Neoinduan. 
The Santa Maria supersequence encompasses low-sinuosity rivers, lakes, and deltas, 
further subdivided into three third-order sequences: Santa Maria 1 (Ladinian), Santa 
Maria 2 (Carnian to Norian), and Santa Maria 3 (possibly Rhaetian to Lower Jurassic) 
(Zerfass et al. 2003). 

Zerfass et al. (2003) propose that the Caturrita Formation represents a transgres-
sive tract system, comprising two, or part of them, third-order sequences deposited 
in a tectonically and structurally disturbed area. According to Zerfass (2007), these 
deposits originated from a high-energy, low-sinuosity, and ephemeral fluvial system, 
featuring associated alluvial plains or lakes, within an extensional basin contem-
poraneous with those in South Africa (Waterberg) and western Argentina (Cuyo 
and Ischigualasto) during the Triassic. The framework for the Triassic period in 
Southern Brazil is still evolving, and lithostratigraphic and chronostratigraphic 
changes are expected. In recent studies, Ladinian deposits have been more precisely 
delineated, resulting in a new stratigraphic sequence equivalent to the Santacru-
zodon AZ biozone (Horn et al. 2014). According to this proposal, the third-order 
sequence Santa Maria 1 from Zerfass et al. (2003) would be equivalent to the 
sequences Pinheiros-Chiniquá (Dinodontosaurus AZ, Ladinian-Carnian) and Santa 
Cruz (Santacruzodon AZ, Carnian). The Santa Maria 2 would be equivalent to the 
Candelária sequence (Hyperodapedon AZ, Santa Maria Formation, and Riograndia 
AZ, Caturrita Formation, Carnian-Norian). 

Recently, the widespread presence of massive siltstones in the Santa Maria Super-
sequence has been interpreted as an eolian contribution in the form of loess (Horn 
et al. 2018), revealing a rather complex sedimentary record. In this scenario, the 
two lowermost Sequences (Pinheiros-Chiniquá and Santa Cruz) would consist of 
ephemeral braided river deposits overlain by dry mudflat deposits. In the Candelária 
Sequence, only the sheetflood delta facies association is present. The Santa Maria
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Supersequence is believed to have been deposited under arid to semi-arid condi-
tions, while the base of the Candelária Sequence records a shift from fluvial/eolian 
depositional systems to fluvial/deltaic systems, along with the disappearance of loess 
deposits and a transition from predominantly terrestrial to more aquatic faunas (Horn 
et al. 2018). 

The Triassic dinosaur footprints in Brazil originate from only two locations, the 
Predebon site and the Linha São Luiz site (Silva et al. 2007a, 2008a, b, c, 2012; 
Figs. 2.1 and 2.2), although other questionable occurrences have been documented 
in the literature (see Chapter 1). The Predebon site is situated in the municipality of 
São João do Polêsine, Rio Grande do Sul, with coordinates 29° 38' 29.14'' S; 53° 
26' 52.14'' W (Fig. 2.1). Covering approximately 100 m in length and six meters 
in height (Fig. 2.3a–c), the studied section corresponds to the upper portion of the 
Alemoa Member of the Santa Maria Formation, near the contact with the Caturrita 
Formation. It can be classified into four distinct facies:

– Facies 1: comprises massive reddish mudstones with calciferous nodules and 
Rhynchosauria bones. 

– Facies 2: reddish or whitish fine tabular sandstones with small scale cross-bedding, 
calciferous nodules at the top of the layer and invertebrate trace fossils, mainly 
Skolithos isp. 

– Facies 3: fine, reddish, tabular massive sandstones with horizontal lamination in 
the upper layers and a high degree of bioturbation, mostly of Skolithos isp. 

– Facies 4: red to orangish fine sandstones with horizontal millimeter to centimeter-
thick laminations, forming lenses of a few meters in length, with invertebrate trace 
fossils (Skolithos isp. and Arenicolites isp.) and vertebrates tracks and trackways, 
together with desiccation mud-cracks and convolute laminations. 

Facies 2 and 3 occur intercalated with Facies 1 in the lower portion of the outcrop, 
while Facies 4 and 5 occur intercalated with Facies 1 in the upper portion. 

The faciological interpretations of the rocks in the upper portion of the Santa Maria 
Formation have been subject to controversy, and various interpretations can be found 
in the literature. For example, mudstones are traditionally interpreted as lacustrine 
deposits, while the lenticular layers represented by Facies 4 could be associated with 
small channels resulting from subaerial exposure events. A more recent explanation 
suggests that this sequence could have been formed by a fluvial system with mean-
dering to stable channels, where the mudstones represent floodplain deposits; the 
tabular sandstones correspond to main channels, while the small sandstone lenses 
are interpreted as crevasse splay deposits (Fonseca and Scherer 1998; Schultz et al. 
2000). 

The Linha São Luiz site (29° 33' 45'' S; 53° 26' 48'' W, Fig. 2.1) is located 
in the municipality of Faxinal do Soturno, state of Rio Grande do Sul, Brazil. The 
outcrop reaches about 20 m thick (Fig. 2.3d–f) and exhibits a stratigraphic succession 
consisting of basal sandstones, intermediate mudstones, and upper rhythmic alterna-
tions of sandstones and mudstones (Fig. 2.2). In the basal portion, there are low angle 
cross bedded and well sorted fine to medium sandstones as well as short scale trough
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Fig. 2.3 Triassic dinosaur footprints ichnosites from southern Brasil. a General view of the  
Predebon site, upper portion of Santa Maria Formation; b detailed view of the outcrop, showing the 
distribution of mudstone and sandstone facies; c detailed view from the top, showing the sandstone 
lens where the footprints were found; d general view of the Linha São Luiz site, Caturrita Forma-
tion; e upper portion of the outcrop, showing the tabular sandstones; f detailed view of the tabular 
layer with the dinosaur footprint
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cross-bedded sandstones followed by massive or sigmoidal trough cross-laminated 
fine sands associated with crevasse splay deposits (Faccini 2007). These sedimentary 
features are indicative of a fluvio-deltaic depositional system (Zerfass 2007). 

The overlying laminated mudstone-siltstone interval is interpreted as representing 
a lacustrine setting with a more permanent water body. This horizon reveals the pres-
ence of fossilized woody remains from both autochthonous and parautochthonous 
gymnosperms, diverse conifer branches, and rare Equisetales (Pires and Guerra-
Sommer 2004; Dutra and Crisafulli 2009). Additionally, it preserves impressions 
of sterile and reproductive parts of Bennettitales (Barboni and Dutra 2013), accom-
panied by Conchostraca, insects, and fish scales, providing invaluable paleontolog-
ical insights (Pires and Guerra-Sommer 2004; Dutra and Crisafulli 2009). In fact, 
the paleoflora of this locality significantly differs from the traditional associations 
of Dicroidium and Araucarioxylon commonly found in the Rosário do Sul Group 
(Guerra-Sommer et al. 2000). 

The uppermost part of the outcrop comprises heterolithic deposits of sandstones 
and mudstones, with compelling evidence of episodic subaerial exposure. These 
rocks have been identified as indicative of crevasse splay deposits and host remarkable 
dinosaur footprints associated with desiccation cracks, occurring on the surface of a 
thick tabular sandstone layer. 

2.3 Footprints: Diversity and Paleobiological Interpretation 

The Triassic dinosaur footprints from Brazil belong to three different forms, origi-
nating from the two mentioned localities. The first two kinds are from the Santa Maria 
Formation in the Predebon site and have been identified as “Dinosaur tracks indet.” 
and ?Grallator isp. (Silva et al. 2008a). The third type comes from the Linha São 
Luiz site in the Caturrita Formation and has been originally identified as Eubrontes 
isp. (Silva et al. 2012). 

The “Dinosaur tracks indet.” consist of two samples (Fig. 2.4a, b) housed in 
the paleontological collection of the Museu de Ciências Naturais (MCN-Museum 
of Natural Sciences) at the Fundação Zoobotânica do Rio Grande do Sul (FZBRS-
Zoobotanical Foundation of Rio Grande do Sul), labeled as MCN-PIC.022 and MCN-
PIC.023, respectively. These footprints are isolated impressions preserved as concave 
epireliefs on finely laminated sandstones with desiccation cracks. The upper layers 
are broken, while the deeper layers are deformed by the weight of the trackmaker. 
The footprint producer’s laterality (right or left autopodium) cannot be determined 
due to the angular nature of the posterior margin of the prints. It is not possible to 
determine whether they were produced by a right or left autopodium. The posterior 
margin of the footprints is angular and there are no phalangeal or plantar pads present. 
The MCN-PIC.022 footprint is tridactyl and digitigrade, featuring sharp claws and 
acute hypexes. The central digit displays a constriction in its proximal portion. The 
length of the footprint, measured along the axis of the central digit, is 8.5 cm. The 
right and central digits exhibit a divergence angle of 57°, while the angle between
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the central and left digits corresponds to 32°. The total divergence angle is 89°. The 
MCN-PIC.023 footprint preserves two digits but is broken, lacking the right portion. 
The digits display sharp claws and acute hypexes, suggesting that the trackmaker 
was possibly a tridactyl dinosaur with bipedal locomotion. According to Thulborn 
(1989), the height at the pelvic girdle (h) can be estimated based on the taxonomic 
group and size range of the footprint. In this context, h would correspond to 4.6 times 
the length of the footprint for small bipedal dinosaurs (with footprints measuring less 
than 25 cm), resulting in an estimated height of the hip joint with the pelvic girdle 
of approximately 40 cm for the MCN-PIC.022 footprint. 

A third footprint was tentatively attributed to the ichnogenus Grallator Hitchcock 
1858. The sample MCN-PIC.021 (Fig. 2.4c) is also housed in the paleontological 
collection of the MCN (FZBRS). ?Grallator isp. is an isolated, tridactyl track, char-
acterized by its mesaxonic and digitigrade nature, as well as sharp claws and acute

Fig. 2.4 Dinosaur footprints from Santa Maria Formation, Predebon site. a, b MCN-PIC.023 and 
MCN-PIC.022, “Dinosaur tracks indet.”; c MCN-PIC.021, ?Grallator isp. (modified from Silva 
et al. 2008a) 
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hypices. Its posterior portion is missing. The central digit is longer than the others and 
bears three preserved phalangeal pads, while the lateral digits exhibit two preserved 
phalangeal pads. The digit on the right side is slightly shorter, possibly corresponding 
to digit II. In this case, the footprint would represent an impression of a left foot; the 
divergence angle between digits II and III would be 21°, and between digits III and 
IV would be 22°. The total divergence angle is 43°. Despite being incomplete, this 
footprint exhibits characteristics that allow its attribution, albeit with a certain degree 
of uncertainty, to the ichnogenus Grallator. These features include the presence of 
three digits separated by low interdigital angles, with digit III being substantially 
longer than the others, and digits II and IV having similar lengths I (Silva et al. 
2008a; Klein and Lucas 2021). It is worth noting that although the ichnogenus Gral-
lator is more commonly associated with the Lower Jurassic (Haubold 1986), it has 
also been identified in Upper Triassic rocks (starting from the Carnian) in regions 
such as South Africa (Olsen and Galton 1984; Raath et al.  1990), Europe, and North 
America (e.g., Haubold 1986). Traditionally, Grallator is attributed to small theropod 
dinosaurs (Olsen and Galton 1984). 

Dinosaur track records in Triassic rocks are relatively common; however, debates 
persist regarding the identification of the trackmaker and the age of the oldest ichnites. 
Tridactyl footprints are frequently ascribed to dinosaurs, with occurrences dating 
back to the Early Triassic (e.g., Demathieu 1989; Avanzini 2002; Marsicano et al. 
2004). Nevertheless, these records often entail uncertainties related to dating, ques-
tionable interpretations, or are tracks attributed to other Archosauromorpha (Thul-
born 1990; King and Benton 1996; Klein and Lucas 2021). Notably, some footprints 
attributed to theropod and sauropodomorph dinosaurs have been documented in rocks 
of Carnian age within the Portezuelo Formation, Argentina (Marsicano and Barredo 
2004). Also, tridactyl footprints of quadrupedal and bipedal trackways related to the 
ichnogenera Atreipus-Grallator (“Coelurosaurichnus”) mark the Anisian-Ladinian 
transition (Klein and Lucas 2021). 

The earliest indisputable occurrences of dinosaur footprints can be tracked back 
to the Carnian period, becoming more common from the Norian stage onwards 
(Lockley and Meyer 2000; Klein and Lucas 2021). As the upper section of the Santa 
Maria Formation was deposited during the Carnian stage (Scherer et al. 2000; Rubert 
and Schultz 2004; Lucas 1998, 2001; Langer 2005; Langer et al. 2018), the tracks 
from this formation are likely attributed to basal dinosaurs rather than other Triassic 
archosaurian groups. Morphological characteristics, such as the presence of a longer 
digit III compared to the others and digitigrade locomotion, lend support to this 
hypothesis (Thulborn 1990). 

The sequence comprising the Santa Maria Formation yields fossils of some of 
the world’s oldest dinosaurs, including Staurikosaurus pricei Colbert 1970 and 
other recently discovered species such as Saturnalia tupiniquim Langer et al. 1999, 
Pampadromaeus barberenai Cabreira et al. 2011, Buriolestes schultzi Cabreira et al. 
2016, Bagualosaurus agudoensis Pretto et al. 2018, Gnathovorax cabreirai Pacheco 
et al. 2019, Nhandumirim waldsangae Marsola et al. 2019, and Erythrovenator 
jacuiensis Müller 2021. The foot bones were not found preserved in the fossils
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of the dinosaurs Staurikosaurus, Pampadromaeus, and Erythrovenator. In  Nhandu-
mirim, only a few isolated bone elements were discovered. Although establishing 
direct associations between fossil tracks and known taxa through skeletons is chal-
lenging, a brief comparison with some Triassic dinosaurs of Brazil may provide 
insights into the trackmakers. Notably, Staurikosaurus, Saturnalia, Gnathovorax, 
and potentially Buriolestes exhibit dimensions consistent with the discovered foot-
prints. However, due to limited knowledge regarding foot anatomy in most early 
dinosaurs, their morphological features tend to be more generic, making it chal-
lenging to conclusively link footprints to specific species. Staurikosaurus, a theropod 
resembling Herrerasaurus, is often reconstructed with functionally tridactyl feet, 
with digit III being longer than the others. Similarly, Langer (2003) observed that 
Saturnalia possessed functionally tridactyl feet, with the three central metatarsals 
forming a slender unit, distinguishing it from other prosauropods and Herrerasaurus, 
with metatarsal III being longer. Gnathovorax also demonstrates size compatibility 
with the footprints (Pacheco et al. 2019), while Buriolestes and Bagualosaurus 
potentially align with the required dimensions (Cabreira et al. 2016; Pretto et al. 
2018). Conversely, the genera Pampadromaeus, Nhandumirim, and Erythrovenator 
are too small to be plausible trackmakers (Cabreira et al. 2011; Marsola et al. 2019). 
Hence, it is plausible that Staurikosaurus, Saturnalia, Gnathovorax, and potentially 
Buriolestes could have produced footprints akin to the studied material. However, 
further research is necessary to conclusively ascertain which species best matches 
the morphological characteristics of the trackmakers. 

The occurrences of dinosaur footprints from the Predebon outcrop constitute the 
only securely identified ones from the Brazilian Triassic. Among the sites with known 
fossil footprint records in the Paraná Basin, the Predebon Site stands out due to its 
superior preservation quality and remarkable diversity (Silva et al. 2007a, 2008a, b, 
c), containing nine morphotypes of lacertoid, mammaloid, and dinosauroid tracks. 
The footprints attributed to Eubrontes Hitchcock 1845, from the Caturrita Forma-
tion, correspond to one sample deposited in the paleontological collection of MCN 
(FZBRS) under the number MCN-PIC.030 (Fig. 2.5a), while the other remains in situ, 
described under the field number FSSL-02 (Fig. 2.5b, Silva et al. 2012). Casts of 
these footprints are available in MCN (FZBRS) and the Museu de Ciências da Terra, 
Serviço Geológico do Brasil—SGB (Museum of Earth Sciences, Geological Survey 
of Brazil) in Rio de Janeiro. These footprints are digitigrade, tridactyl, and mesax-
onic, with acute hypices and sharp digital ends. The posterior margin exhibits a 
pronounced and evident posteromedial notch. The MCN-PIC.030 sample is incom-
plete due to erosive effects and represents the impression of a left foot, with the 
plantar portion, digit IV, and the proximal part of digits II and III preserved. Digit 
IV is the most complete, featuring three phalangeal pads and a claw mark. On the 
other hand, the FSSL-02 footprint represents the complete impression of a right foot, 
with the digits curving medially. The footprint is longer than wide, and there are no 
phalangeal or plantar pads. Digits II and IV show nearly equal length, while digit III 
is longer.

The footprints clearly correspond to impressions made by dinosaurs and are distin-
guishable from chirotheroid tracks of archosaurs due to their strong mesaxonic and
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Fig. 2.5 “Theropod tracks indet.” from Caturrita Formation, Linha São Luiz site. a Sample MCN-
PIC.030, incomplete footprint; b footprint FSSL-02, which remains in situ; c composite photograph 
illustrating the original position of the two footprints; d specimen FSSL-02 in perspective, showing 
the deformation of the substrate (modified from Silva et al. 2012)

digitigrade pattern and because of their tridactily (Fig. 2.5c). The icnotaxonomic 
determination, however, may be reconsidered, as there are certain difficulties arising 
from the poor preservation of more detailed morphological features such as digital 
pads or the precise delineation of their contours. The footprints were attributed to 
Eubrontes by Silva et al. (2012), considering their fully digitigrade stance, typical 
theropod tridactyl morphology, and large size, exceeding 28 cm in length (as defined 
by Olsen et al. 1998). The material was then compared to Eubrontes veillonensis 
Lapparent and Montenat 1967, and the ichnogenera Gigandipus Hitchcock 1855 
(also considered a behavioral variant of Eubrontes sensu Rainforth 2004) and Tyran-
nosauropus Haubold 1971. A comparison could also be drawn with Columbosauripus
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Sternberg 1932, in which the toes exhibit tapering (gradually narrowing), and the 
total divergence (II–IV) is typically wider than in Eubrontes. In  Eubrontes tracks, 
following the tendency for large animals to have stouter toes, the toes are thick up 
to the distal end of the toe (Farlow 2018), from which a slender claw protrudes, and 
the total divergence is usually less than 51°. Therefore, specimens from the Catur-
rita Formation might be more appropriately classified as “Theropod tracks indet.”, 
a designation that will be consistently used henceforth, and their classification as 
Eubrontes should be abandoned. 

Based on the FSSL-02 footprint, the size of the trackmaker was estimated using the 
equations proposed by Thulborn (1989) through morphometric ratios and allometric 
equations. In both methods, the height (h) was estimated to be 2.10 m, corresponding 
to an animal up to 8 m in length, similar in size to a large Allosaurus. All this 
information suggests that a large theropod dinosaur produced these footprints. The 
known paleofauna of the Linha São Luiz outcrop mainly includes small-sized animals 
such as sphenodonts, procolophonids, lepidosauriformes, cynodonts, and possible 
pterosaurs (Bonaparte and Sues 2006; Cisneros and Schultz 2003; Bonaparte et al. 
2010a, b; Bonaparte et al. 2001, 2003), and one small dinosaur (Rubert and Schultz 
2004; Bonaparte et al. 2006). The paleofauna of the Caturrita Formation also includes 
dicynodonts, archosaurs, and the dinosaurs Guaibasaurus candelariensis Bonaparte 
et al. 1999, Unaysaurus tolentinoi Leal et al. 2004, Sacisaurus agudoensis Ferigolo 
and Langer 2006, and Macrocollum itaquii Müller et al. 2018 (e.g. Holz and De 
Ros 2000). Among the previously described forms, none could be responsible for 
the footprints studied here. In fact, the Grallator footprint from the Santa Maria 
Formation (Silva et al. 2008a) is representative of what would be expected for the 
Brazilian Triassic dinosaurs. 

2.4 On the Age of the Earliest Large Theropod Tracks 

The age of the earliest occurrences of large dinosaur tracks has been a subject of much 
debate. Haubold (1971) considered the presence of Eubrontes both at the end of the 
Triassic and the beginning of the Jurassic. Olsen and Galton (1984) proposed that 
the appearance of Eubrontes coincides with the base of the Jurassic. Subsequently, 
the ichnogenus was regarded as diagnostic of the Jurassic, and its sudden appearance 
indicated a significant increase in the size of theropod dinosaurs at the Triassic-
Jurassic boundary (e.g., Lockley and Hunt 1994; Olsen et al. 2002). However, Triassic 
footprints larger than 25 cm in length were reevaluated by Lucas et al. (2006) and 
attributed to Eubrontes, with occurrences ranging between 26 and 50 cm and ages 
from the Norian to the Rhaetian, and possibly the Carnian. Nevertheless, size criteria 
alone cannot provide a solid ichnotaxonomic basis; morphological elements must be 
considered for proper identification. 

It now seems evident that the appearance of large dinosaur tracks occurred before 
the beginning of the Jurassic, and there were Triassic animals capable of producing
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footprints at least of medium Eubrontes size. However, theropod footprints over 
40 cm in length are more characteristic of the Jurassic. 

The Norian age of the Caturrita Formation was initially established through corre-
lations with faunas from the Los Colorados Formation in Argentina (Rubert and 
Schultz 2004; Soares and Schultz 2006). However, earlier studies considered the 
Argentine deposits to be of Rhaetian age (Lucas 1998; Heckert and Lucas 1998). 
Recently, high-precision U–Pb zircon geochronology has dated the maximum age of 
the Caturrita Formation to 225 Ma (Langer et al. 2018). Nevertheless, some elements 
of the paleofauna and paleoflora found in the Linha São Luiz outcrop within the 
Caturrita Formation exhibit affinities with the Jurassic. These include sphenodon-
tids, Brasilodontidae cynodonts, small-sized dinosaurs, the procolophonid Soturnia 
caliodon, and a probable primitive pterosaur (Bonaparte et al. 1999, 2001, 2003, 
2006, 2010b; Cisneros and Schultz 2003; Martinelli et al. 2005; Bonaparte and Sues 
2006; Soares et al. 2011). Regarding the paleofloristic content, Barboni and Dutra 
(2013) identified a new species of Bennettitales, Williamsonia potyporanae, at the  
Linha São Luiz site. The advanced morphology of this species suggests a Rhaetian 
or even younger age. 

The challenges in correlating the paleobiota of the Linha São Luiz site arise 
from its location in a depressed block, sometimes placing it at the same topographic 
level as the upper beds of the Santa Maria Formation (Da-Rosa and Faccini 2005). 
Additionally, the endemism of most of its faunal components further complicates 
the correlation. According to Silva et al. (2012), the occurrence of fossil footprints 
and the paleofloristic and paleofaunistic data suggest a Rhaetian age for the upper 
portion of the Caturrita Formation, or at least for the top of the Linha São Luiz site, 
which might even correspond to a new geological unit. Further studies in the region 
are warranted. 

A third set of purportedly Triassic tracks was previously described (Cargnin et al. 
2001; Silva et al. 2007b). They studied rounded contour structures exposed on a 
horizontal outcrop at a locality known as Novo Treviso, also in Rio Grande do 
Sul, which was previously attributed to the Caturrita Formation. They concluded 
that these structures corresponded to undertracks produced by large vertebrates, 
possibly prosauropod dinosaurs. Identifying and interpreting vertebrate-generated 
bioturbations can be challenging, often relying more on sedimentological criteria 
than morphological features. Large vertebrates, particularly, can create metric-scale 
deformations in relation to the trampled surface due to the significant vertical pressure 
exerted on the sediment. 

The rocks from the Novo Treviso locality were subsequently studied in a geolog-
ical mapping conducted by the Geological Survey of Brazil (SGB–CPRM) and iden-
tified, along with other outcrops in the region, as belonging to the Guará Formation 
(Zerfass 2007). The Guará Formation predominantly crops out in the western region 
of the State of Rio Grande do Sul (Scherer et al. 2000) and consists of a succes-
sion of fine to conglomeratic sandstones with small to large-scale cross-beddings 
and planar lamination, interspersed with centimeter-thick pelite layers (Scherer et al. 
2000). These deposits were formed by interlaced fluvial systems associated with lakes 
and aeolian dunes (Scherer et al. 2000). Based on the fossil content, which mainly
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includes fish, conchostracans, mollusks, and dinosaur footprints (Scherer and Lavina 
2005; Dentzien-Dias et al. 2007; Zerfass  2007), the age of the Guará Formation was 
estimated to range from the Late Jurassic to the Early Cretaceous. Consequently, 
the Novo Treviso locality corresponds to Jurassic-Cretaceous deposits rather than 
Triassic, as previously believed. 

The Guará Formation in the western region of Rio Grande do Sul contains occur-
rences of Sauropoda and Theropoda dinosaur footprints (Dentzien-Dias et al. 2007). 
The circular structures exposed in Novo Treviso resemble descriptions of Sauropoda 
footprints in the literature (e.g., Thulborn 1990; Lockley 1991) and are likely asso-
ciated with these animals. Additionally, they share similarities in shape and dimen-
sions with those found in the western part of the state, where footprints show limited 
morphological preservation, lacking digital structures, but exhibiting well-marked 
deformation features. These deformations are visible even in longitudinal cross-
sections of vertical exposures, suggesting relatively deep impressions (Dentzien-Dias 
et al. 2007). 

2.5 Paleogeographical Distribution of the Footprints 

Once considered a relatively rare group in the Triassic period, dinosaurs rose to 
become the dominant terrestrial animals throughout the Mesozoic era. In the last 
few years, our understanding of this scenario has evolved, revealing a more diverse 
and widespread presence of dinosaurs in Triassic faunas than previously imagined. 
Additionally, there is mounting evidence supporting the hypothesis that dinosaurs 
originated in South America, between Argentina and southern Brazil (Irmis et al. 
2007; Langer et al. 2018; Garcia et al. 2019; Novas et al. 2021). 

This context holds significant implications for comprehending the dinosaur foot-
prints found in the Brazilian Triassic. In recent decades, the Brazilian record 
of dinosauriforms has substantially expanded, encompassing a broad range of 
sauropodomorphs, herrerasaurids, silesaurids, and potential theropods (Ferigolo and 
Langer 2006; Langer and Ferigolo 2013; Cabreira et al. 2016; Marsola et al. 2019; 
Müller et al. 2018; Pacheco et al. 2019; Novas et al. 2021). 

Particularly noteworthy is the Quarta Colônia region, situated in the central area of 
Rio Grande do Sul State, which has recently gained increasing importance in paleon-
tological research. This relevance stems from frequent discoveries of Triassic fossils 
within the region. The fossils found in the Quarta Colônia area exhibit remarkable 
diversity, including some of the oldest known dinosaurs, as well as tracks and traces of 
vertebrates (Silva et al. 2007a, 2008a, b, c, 2012). Through ongoing exploration and 
scientific investigation, these findings contribute significantly to our understanding 
of the early evolutionary history and ecological dynamics of dinosaurs, shedding 
light on their pivotal role in shaping ecosystems during the Triassic period. 

The Triassic formations in Brazil and Argentina present a remarkably diverse and 
relatively abundant record of dinosauriforms. Together, the Brazilian and Argen-
tine sequences provide a comprehensive stratigraphic succession of the Carnian and
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Norian stages (Novas et al. 2021), documenting a representative assemblage of verte-
brate faunas and the early radiation of dinosaurs, with a growing number of taxa 
being discovered annually. Each new finding changes the phylogenetic proposal and 
engenders novel evolutionary relationships (Ferigolo and Langer 2006; Langer and 
Ferigolo 2013; Cabreira et al. 2016; Marsola et al. 2019; Müller et al. 2018; Pacheco 
et al. 2019; Novas et al. 2021). Nevertheless, a consensus on the phylogeny of the 
early dinosaurs and their precursors has not yet been achieved (Novas et al. 2021). 

In general, the Triassic dinosaurian fauna consists of dinosauromorphs, encom-
passing three clades: Lagerpetidae, Silesauridae, and Dinosauria (Garcia et al. 2019). 
Although Lagerpetidae and Silesauridae precede Dinosauria in age, all three groups 
coexisted for at least 21 million years (Irmis et al. 2007; Langer et al. 2018; 
Garcia et al. 2019), from the middle Carnian, around 233 million years ago. The 
strata containing the oldest Dinosauria, represented by the lower portion of the 
Ischigualasto Formation in Argentina and the lower segment of the Candelária 
sequence in Brazil (corresponding to the uppermost part of the Santa Maria Forma-
tion), are dated between the middle and late Carnian, approximately 231 to 233 
million years ago (Martinez et al. 2011, 2013; Langer et al. 2018). Other occurrences 
of dinosauromorphs, such as the Maleri Formation in India and the Pebbly Arkose 
Formation in Zimbabwe, lack precise dating but are considered Carnian based on 
biostratigraphic correlation. These occurrences testify to the broader geographical 
distribution of these animals during this interval, extending to the eastern side of 
Pangaea (Langer et al. 2010, 2018; Novas et al. 2011, 2021). The taxonomic ascrip-
tions of pre-Norian dinosaurs to Theropoda, Sauropodomorpha, and Ornithischia 
remain tentative (Novas et al. 2021) and should be interpreted with caution. 

In North America, the earliest occurrences of dinosaurs are found in the Chinle 
Formation, dating to the Norian age. However, the faunas in this region are taxo-
nomically less diverse and numerically less abundant compared to their counterparts 
in South America (Irmis et al. 2011). Notably, the North American faunas occupied 
paleolatitudes closer to the equator, whereas the South American assemblages were 
situated at higher latitudes, approximately 30° S to 35° S. This latitudinal distinction 
highlights the significant influence of latitude in shaping the geographical distribution 
of early dinosaurs (Langer et al. 2010; Novas et al. 2011). The delayed appearance 
of the first dinosaurs in the northern region may be attributed to climatic changes 
that reduced the contrasts between temperate and tropical climate zones, thereby 
lessening the barriers that impeded the dispersal of these animals (Kent et al. 2014). 

2.6 Paleoenvironmental and Paleoclimatic Contexts 

Regarding the preservation of tracks from the Santa Maria Formation (Predebon 
outcrop), detailed morphological analysis has shed light on behavioral characteris-
tics of the animals responsible for these traces. Notably, evidence suggests activities 
such as swimming, occasional bipedalism, and potential climbing behavior in sphen-
odontian tracks (Silva et al. 2008c). In contrast, non-mammalian cynodonts exhibit a
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gait consistent with basal amniotes, including tail dragging (Silva et al. 2007a, 2008a, 
b, c). Preservation of these tracks is influenced by the presence and thickness of a 
water film during their formation, as well as subsequent subaerial exposure. This 
categorization has resulted in five distinct types: underwater tracks, semi-aquatic 
tracks, semi-terrestrial tracks, wet substrate tracks, and damp substrate tracks (Silva 
et al. 2007a). Of these, wet and damp substrate tracks have demonstrated the best 
preservation conditions. The presence of temporary channels in seasonal climates, 
within the floodplain system where these footprints were produced, indicates regions 
with varying water depth. Some footprints near the center of the channels could be 
subaquatic or semi-aquatic, while those closer to the margins and more exposed to 
subaerial conditions likely resulted in the other preservation types. These findings 
contribute to our understanding of the anatomy and behavior of the trackmakers 
and their interactions with the surrounding environment. Regarding the dinosaur 
footprints from Santa Maria Formation, they were likely created on a damp and rela-
tively non-plastic substrate, followed by prolonged subaerial exposure. This suggests 
that some of these tracks may be undertracks, given the absence of certain surface 
features, such as well-defined claw and digital pad impressions. The presence of 
various morphological types of footprints within a single outcrop of the Santa Maria 
Formation has revealed a complex ichnocoenosis, comprising different kinds of 
sphenodontians, cynodonts, and dinosaurs. This is in contrast to the known skeleton 
record from the top of the Alemoa Member. Interestingly, this ichnocoenosis hints at 
a paleofauna similar to that found in the Caturrita Formation, indicating that ichno-
fossils may precede the record of groups represented by body fossils (Lockley 1991), 
providing valuable complementary information. 

The two footprints attributed to “Theropod tracks indet.” clearly exhibit charac-
teristics typical of large theropod dinosaurs (Haubold 1971; Thulborn 1990; Lockley 
1991). Certain features of the footprints can provide valuable insights into the 
behavior of the track-makers, substrate conditions during deposition, and the preser-
vation of the strata. The footprints preserved in a tabular sandstone layer show signs 
of plastic deformation (Fig. 2.5c). During field preparation (Silva et al. 2012), it was 
observed that the sandy siltstone layer covering the footprints was also deformed and 
churned above them, indicating that the trackmaker stepped on the fresh silt sedi-
ment, penetrating it, and reaching the sand below (Brand and Kramer 1996; Milàn 
and Bromley 2006). While the impressions are not recognizable in the siltstone layer 
due to the fluid nature of the original substrate, they are well-preserved in the sand-
stone layer below (Fig. 2.5d). This preservation process enhances the potential for 
footprints’ survival by eliminating exposure to air after their formation. The original 
footprint should have been larger than the preserved one, with its size controlled 
by the depth of the impression. This kind of preservation can be understood as a 
variation of the classic undertracks and ghost prints, similar to what has been termed 
“cut undertracks” by Goldring and Seilacher (1971). Furthermore, the total diver-
gence of the studied footprints is slightly high for their size, suggesting that they 
were produced in softer and wetter soil. Footprints formed in such substrates tend 
to exhibit higher divergence angles than those on firm ground (Currie and Sarjeant 
1979; Thulborn 1990).
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The preservation of Triassic dinosaur footprints in Brazil occurred in fluvial envi-
ronments associated with the deposition of overbank sediments in floodplains (Santa 
Maria Formation) and crevasse splay deposits (Caturrita Formation) (Fig. 2.6). Both 
facies are similar components of fluvial systems, where unconsolidated sediments 
are deposited due to river overflow, followed by progressive drying and compaction 
of the deposited layer, creating a suitable substrate for new sedimentation. This 
process results in a continuous gradation of sediment moisture and viscosity condi-
tions, eventually reaching the optimal composition for the preservation of different 
kinds of fossil tracks. Thus, fluvial systems hold significant potential for vertebrate 
ichnology and play a crucial role in preserving Triassic dinosaur footprints in Brazil. 

The establishment of fluvial systems and the radiation of dinosauromorphs during 
the Carnian in the Brazilian Triassic rocks appear to be associated with profound

Fig. 2.6 Art conception of 
the Triassic dinosaur 
trackmakers in their 
respective environments. 
Left, reconstruction of the 
?Grallator trackmaker in the 
floodplains of the Santa 
Maria Formation during the 
Carnian Pluvial Episode. 
Right, “Theropod tracks 
indet.” trackmaker walks on 
the newly deposited sands of 
crevasse splay deposits of the 
younger Caturrita Formation 
(Art by Guilherme Gehr) 
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global climatic changes that occurred during this period. The Triassic was typi-
cally dominated by arid climates. However, during the Carnian, this dominance 
was disrupted by several episodes of significant increase in precipitation, resulting 
in a warmer and more humid global climate and causing extensive environmental 
changes. This series of events is referred to as the “Carnian Pluvial Episode,” which 
occurred around 234 to 232 million years ago, likely triggered by massive volcanic 
eruptions in the Wrangellia province in western Canada, resulting in considerable 
basalt emissions (Dal Corso et al. 2020). These eruptions released significant amounts 
of greenhouse gases into the atmosphere, leading to peaks of global warming and 
inducing the pluvial episodes. This interval coincides with the deposition of the early 
Candelária sequence and the appearance of dinosauromorph fossils in Brazil. 

The Carnian Pluvial Episode resulted in significant environmental changes, 
leading to disturbances in both marine and terrestrial ecosystems, followed by 
substantial aridification. These alterations caused the extinction of several species 
and facilitated the emergence of new faunal and floral radiations during the remainder 
of the Triassic period. In the Triassic rocks of Brazil, there is a noticeable decline in 
dicynodonts, rhynchosaurs, and pseudosuchians during this interval (Dal Corso et al. 
2020). In this context, dinosaurs likely appeared and diversified as opportunistic and 
generalist fauna, in contrast to more specialized synapsids and archosaurs, experi-
encing rapid expansion across Pangaea (Benton et al. 2018). The transition is also 
evident in the replacement of the Dicroidium flora with conifer-dominated forests. 

The record of Triassic fossil tracks seems to correspond to this pattern, demon-
strating the appearance of successive dinosaurian groups and the replacement of 
the non-mammalian Synapsida and non-dinosaur Archosauria fauna with dinosauri-
forms. As observed by Bernardi et al. (2018), footprints of the ichnogenus Gral-
lator, associated with small bipedal dinosaurs, emerge in the second half of the 
Carnian, while Eubrontes or large theropod footprints, associated with medium to 
large-sized carnivores, appear during the Norian. Although the paleoenvironmental 
and paleobiogeographic conditions are not the same, and the genera and species of 
the trackmakers are different as well, a similar pattern of replacement of smaller and 
more generalist dinosaurs by larger, more specialized ones seems to emerge in the 
discoveries in Brazilian Triassic associations. 

2.7 Conclusions 

The tridactyl footprints from the Santa Maria Formation have been identified as 
“Dinosaur tracks indet.” and ?Grallator isp., attributed to dinosauriform animals. The 
genera Staurikosaurus, Saturnalia, and Sacisaurus, known from rocks of the Alemoa-
Caturrita sequence, show morphological similarities consistent with the animals that 
produced these tracks. The occurrences of dinosaur footprints from the Santa Maria 
Formation represent the oldest in Brazil. 

The footprints from the Caturrita Formation were identified as “Theropod tracks 
indet.”, produced by large theropod dinosaurs. The dimensions of these footprints
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are more advanced than those commonly found in the Carnian/Norian, aligning them 
with those found after the Rhaetian/Jurassic. 

Furthermore, previously registered footprints in the Caturrita Formation at the 
Novo Treviso site, initially attributed to prosauropod dinosaurs, have been reinter-
preted as belonging to the Guará Formation. This reevaluation places their age within 
the Late Jurassic to Early Cretaceous period. 

The depositional sequence of Santa Maria-Caturrita formations, including both its 
osteological and ichnological records, provides an almost continuous record of the 
interval between the emergence of dinosaurs and their establishment as ecologically 
dominant elements in continental faunas. These events appear to be closely associ-
ated with the Carnian Pluvial Episode, a series of environmental changes linked to 
global warming, resulting in significant extinctions and the replacement of flora and 
fauna. The Triassic dinosaur footprints in Brazil, although currently limited to few 
layers, serve as valuable complements to the osteological record and contribute to 
the corroboration of these events. 

Nonetheless, several questions remain unanswered, and there are still gaps that 
need to be filled. New research and the discovery of new specimens are essential 
to a more comprehensive understanding of the Triassic ichnocoenoses in Southern 
Brazil. 
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Chapter 3 
Dinosaur Tracks and Trackways 
from the Upper Jurassic Guará 
Formation, Paraná Basin, Brazil 

Heitor Francischini , Denner Deiques Cardoso , 
and Paula Dentzien-Dias 

3.1 Introduction 

The Late Jurassic, known as “the Age of Brontosaurs” (Lockley and Meyer 2000), is 
widely known for its giant dinosaurs, which are well represented in several tracksites 
around the world. In Europe, there are more than 30 sites with well-preserved dinosaur 
tracks, coming mainly from the Iberian Peninsula and the Jura Mountains (e.g., 
Lockley and Meyer 2000; Belvedere et al. 2019). In North America, the Upper 
Jurassic Morrison Formation provides impressive long trackways and evidence of 
sauropod gregariousness at the Purgatoire Valley ichnosite of Colorado (Lockley et al. 
1986). In other hand, with the exception of the High Atlas Mountains in Morocco 
(Dutuit and Ouazzou 1980; Belvedere et al. 2010, 2019), the Late Jurassic dinosaur 
track record is very scarce and fragmentary in Gondwana, with punctual occurrences 
in Australia (Romilio et al. 2021), Chile (Moreno and Pino 2002; Moreno et al. 
2004; Moreno and Benton 2005), Colombia (Moreno-Sánchez et al. 2011), Guyana 
(Leonardi 1994), Uruguay (Mesa and Perea 2015), and Brazil (see below; Table 3.1).

Contrasting to Triassic and Cretaceous systems, the Jurassic of South America is 
constrained, with few continental sedimentary units occurring along the continent 
(Table 3.1; Bonaparte 1981; Leonardi 1994). As a consequence, the biota of such 
period is poorly known (e.g., Colbert 1977). In Brazil, Jurassic fossils follow the
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Table 3.1 Summary of the Jurassic dinosaur track-bearing geological units of South America 
(ordered by age) 

Unit Age Country References 

Marifil Volcanic 
Complex 

Early Jurassic (pre-Pliensbachian) Argentina Díaz-Martínez et al. 
(2017) 

La Matilde 
Formation 

Middle Jurassic 
(Bajocian-Callovian) 

Argentina Casamiquela (1964); 
Coria and Carabajal 
(2004) 

Baños del Flaco 
Formation 

Late Jurassic 
(Tithonian) 

Chile Casamiquela and 
Fasola (1968); 
Moreno and Pino 
(2002); Moreno and 
Benton (2005) 

Estación Member, 
San Salvador 
Formation 

Late Jurassic 
(Kimmeridgian)–Lower Cretaceous 

Chile Moreno et al. (2004) 

Batoví Member, 
Tacuarembó 
Formation 

Late Jurassic 
(Kimmeridgian-Tithonian) 

Uruguay Mesa and Perea 
(2015) 

Guará Formation Late Jurassic 
(Kimmeridgian-Tithonian) 

Brazil Dentzien-Dias et al. 
(2007) and further 
references in this 
chapter 

Takutu Formation Late Jurassic-Early Cretaceous Guyana Leonardi (1994) 

Chacarilla 
Formation 

Late Jurassic-Early Cretaceous Chile Salinas et al. (1991); 
Rubilar et al. (2000) 

Arcabuco 
Formation 

Late Jurassic-Early Cretaceous Colombia Moreno-Sánchez 
et al. (2011) 

Pirambóia 
Formation 

Jurassic? (see text) Brazil Christofoletti et al. 
(2021) 

Indeterminate unit 
at Faxinal do 
Soturno 

Jurassic? (see text) Brazil Silva et al. (2012)

same pattern, with sparse vertebrate body fossils found in the Pastos Bons (Alparcata 
Basin), Sergi, Aliança (both Recôncavo-Tucano-Jatobá Basins), Missão Velha, and 
Brejo Santo (both Araripe Basin) formations. Dinosaur remains comprise few records 
from the Sergi and Aliança formations (Upper Jurassic; Dom João local stage): one 
isolated caudal vertebral centrum of an allosauroid of carcharodontosaurian affinity 
(Bandeira et al. 2021) and one Neotheropoda caudal vertebra (Oliveira et al. 2022), 
respectively. 

The Brazilian Jurassic dinosaur track record is also very incomplete and is 
restricted to the Paraná Basin. Recently, Christofoletti et al. (2021) described large-
sized (about 50 cm long) tracks preserved in cross section from the Pirambóia Forma-
tion sandstones of the São Paulo state, considering this unit Late Jurassic in age



3 Dinosaur Tracks and Trackways from the Upper Jurassic Guará … 65

and chronocorrelated to the Guará Formation. Historically, the age of the Piram-
bóia Formation has been debated and recent propositions (such as Silva et al. 2023) 
have considered it Triassic based on subsurface data. A second record comprises 
two theropod tracks (Eubrontes isp.) described by Silva et al. (2012) in the upper 
beds (here assigned to an indeterminate geological unit, different from the orig-
inal Caturrita Formation assignation) of the Linha São Luiz site, at the Faxinal do 
Soturno municipality, Rio Grande do Sul state. Although Silva et al. (2012) regarded 
this occurrence as Late Triassic, plants (conifer wood: Agathoxylon africanum, 
Chapmanoxylon jamuriense, Kaokoxylon zalesskyi, Megaporoxylon kaokense, and 
Sommerxylon spiralosus; branches and leaves: Brachyphyllum sp., Pagiophyllum sp. 
and Pterophyllum?; Benettitales reproductive structure: Williamsonia potyporaneae) 
and conchostracans (Eosestheriidae: Nothocarapacestheria soturnensis; Fushuno-
graptidae: Australestheria sp.) found in the levels below to the Eubrontes-bearing 
level point to a (Early to Middle?) Jurassic age for the dinosaur tracks (Pires and 
Guerra-Sommer 2004; Dutra and Crisafulli 2002; Barboni and Dutra 2013; Rohn 
et al. 2014; Jenisch et al.  2017). Lastly, the Guará Formation contains a more complete 
and abundant dinosaur track record (Fig. 3.1). The early reports of dinosaur tracks 
from this unit come from the early 2000’s (Schultz et al. 2002; Scherer and Lavina 
2005) and, since then, systematic fieldworks performed by our team have shed light 
on the composition and diversity of this ichnofauna (Fig. 3.2). This work brings a 
summary of the state of the art of the Guará Formation dinosaur ichnology based on 
the successive fieldworks made by our team in the last 20 years and discusses the 
next steps on the study of Jurassic dinosaurs in Brazil.

3.2 Geological Context 

The Guará Formation is a unit that crops out in the southern Brazil (Rio Grande do Sul 
and Paraná states) and in the northern Uruguay (mainly in the Rivera and Tacuarembó 
departments), where it is known as the Batoví Member of the Tacuarembó Formation 
(Lavina et al. 1985; Perea and Martínez 2004; Scherer and Lavina 2005; Reis et al.  
2019). Because of the lithological continuity between these units along the Brazil-
Uruguay border, the authors often refer to them as representing a single depositional 
environment and respective lithostratigraphic unit, the Guará-Batoví. Additionally, 
the Guará-Batoví also occurs in subsurface in Mato Grosso do Sul, Santa Catarina 
and São Paulo states (Silva et al. 2023). From a lithological point of view, the Guará 
Formation is composed of fine- to coarse-grained sandstones (quartzarenites) and 
mudstones and represents a large distributive fluvial system characterized by amalga-
mated perennial braided rivers, where fluvial currents deposited alloctonous remains 
in association to diverse parautoctonous elements (Lavina et al. 1985; Scherer and 
Lavina 2005; Amarante et al. 2019; Reis et al.  2019). Eolian dunes and sandsheets 
also occur, but seem to be restricted to southwestern Rio Grande do Sul state and 
northern Uruguay. The eolian paleocurrents have a W-E direction, while the fluvial 
ones are NNE-SSW (Scherer and Lavina 2005; Reis et al.  2019).
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Fig. 3.1 Summary of the occurrence of dinosaur tracks in the Upper Jurassic Guará-Batoví unit of 
Brazil (Rio Grande do Sul state) and Uruguay. Localities: Cañada del Ombú (CDO), Cerro Caverá 
(RSCC), Cerro Torneado (RSCT), Granja Santa Vitória (RSGV), Norival Gonçalves (RSNG), 
Rancho Sossego (RSRS), “Saurópodes” (RSSA), Sanga do Jacaré (RSSJ), Sanga do Torneado 
(RSST), Touro Passo (RSTP), and Cerro Palomas (SLCP). The Juventina Rosa (RSJR) locality is 
not depicted

In Uruguay, the Batoví Member of the Tacuarembó Formation is considered 
Kimmeridgian–Tithonian in age, as estimated by the presence of the hybodontid 
shark Priohybodus cf. P. arambourgi, the fushunograptid conchostracan Orthes-
theria (Migransia) ferrandoi and the theropod dinosaurs Ceratosaurus sp. and 
Torvosaurus sp. (Perea and Martínez 2004; Soto and Perea 2008; Perea et al. 
2009; Soto et al. 2020a, b). Other vertebrates of the Batoví paleofauna include the 
coelacanth Mawsonia sp., the lungfishes “Ceratodus” tiguidiensis and Ceratodus 
africanus, the pholidosaur crocodyliform Meridiosaurus vallisparadisi, the turtle 
Tacuarembemys kusterae, and the ctenochasmatid pterosaur Tacuadactylus luciae, 
besides indeterminate abelisaurid theropods (Soto and Perea 2010; Fortier et al. 2011; 
Perea et al. 2014; Soto et al. 2021, 2022; Toriño et al. 2021). Sauropod, theropod and 
ornithopod tracks also occur in the Batoví Member of the Tacuarembó Formation 
(Mesa and Perea 2015). The lithostratigraphic continuity between the Guará and
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Fig. 3.2 Historical record of the first findings of dinosaur tracks in the Guará Formation at the 
Cerro Torneado (RSCT) locality

Tacuarembó formations allows the extrapolation of the same age to the Brazilian 
territory. 

The fossil record of the Guará Formation (in Brazil) does not include body fossils 
besides conchostracans (Fig. 3.3a–d), but invertebrate trace fossils (Arenicolites isp., 
Beaconites coronus and Taenidium barretti; Fig. 3.3e), tetrapod paleoburrows and 
dinosaur tracks are commonly found (Netto 1989; Dentzien-Dias et al. 2007, 2008, 
2012; Francischini et al. 2015, 2018). These traces occur mainly in sand interdune 
deposits, while bioturbation structures are rare in the eolian dunes (Dentzien-Dias 
et al. 2008).

Up to this point, eleven fossiliferous outcrops of the Guará Formation provide 
ichnological evidence of dinosaurs, ten of them in the Rosário do Sul municipality 
and one in the Santana do Livramento municipality (Rio Grande do Sul state), Brazil 
(Fig. 3.4).
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Fig. 3.3 a–d Conchostracans from the Arroio do Beco locality, Santana do Livramento munici-
pality. Scale bars: 1 mm; e Taenidium barretti from the Cerro Palomas (SLCP) locality

Fig. 3.4 a–b Mode of occurrence of the Guará Formation outcrops in Brazil. a aerial view from 
the Cerro Caverá (RSCC) locality; b Overview of the Sanga do Torneado (RSST) locality. The 
theropod track UFRGS-PV-0207-G can be seen inside the ravine; c, d Signs of the occurrence of 
dinosaur tracks and trackways of the Cerro Torneado (RSCT) and Cerro Palomas (SLCP) localities, 
Rosário do Sul and Santana do Livramento municipalities, respectively 

RSCC (Rosário do Sul, Cerro Caverá; UTM 21 J 0675706/6645873): this outcrop is 
composed of sandstones originated in a large sheet of bioturbated fine sand, where 
a wide-gauge sauropod trackway with five defined footprints and at least four other
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isolated, less defined tracks, were found (Fig. 3.4a; Deiques 2023). The tracks remain 
in situ; 

RSCT (Rosário do Sul, Cerro Torneado; UTM 21 J 0679148/6652013): this outcrop 
presents basal layers composed of sandstones clearly coming from paleodunes with 
paleowinds directed to the north, while the upper layers reveal a sequence of fully 
bioturbated eolian sand sheets (Fig. 3.2; Dentzien-Dias et al. 2007). The tracks 
FURG-H-480, UFRGS-PV-0204-G (formerly UFRGS-PV-0004-J/K), UFRGS-PV-
0205-G (formerly UFRGS-PV-0005-J/K), UFRGS-PV-0206-G, and UFRGS-PV-
0208-G were collected on an unnamed local road, but several (RSCT-1 to RSCT-14) 
still remains in situ (see Francischini et al. 2018, for example); 

RSGV (Rosário do Sul, Granja Santa Vitória; UTM 21 J 684,118/6653718) is 
composed of a layer of sandstones from eolian sand sheets, about 30 cm thick, 
totally dinoturbed (Dentzien-Dias et al. 2007); 

RSJR (Rosário do Sul, Juventina Rosa; UTM 22 J 068203/6653736): the base of this 
outcrop is composed of sandstones from fossil eolian dunes and the top of sandstone 
from eolian sand sheets. Only one isolated track was found and it remains in situ 
(Dentzien-Dias et al. 2007); 

RSNG (Rosário do Sul, Norival Gonçalves; UTM 21 J 0681104/6654026): the sand-
stones of this outcrop come both from eolian dunes and sand sheets. Only one isolated 
sauropod track was found and it remains in situ (Dentzien-Dias et al. 2007); 

RSRS (Rosário do Sul, Rancho Sossego; UTM 21 J 681913/6653733): composed, 
from the base to the top, of fine sandstones of fluvial origin, other sandstones from 
eolian sand sheets, a layer of massive siltstone, and more sandstone from sand sheets 
(Deiques 2023). All tracks from RSRS remain in situ; 

RSSA (Rosário do Sul, “Saurópodes”; UTM 21 J 680026/6654689): the outcrop is 
composed of, from the base to the top, fine sandstones of fluvial origin, conglom-
erates with siltstone intraclasts, sandstone from sand sheet, fine and conglomeratic 
sandstones, and again layers of fine sandstones (Deiques 2023). The sauropod tracks 
from RSSA still remain in situ; 

RSSJ (Rosário do Sul, Sanga do Jacaré; UTM 21 J 0681689/6653839): composed 
only of sandstones produced in paleodune environments, whose paleowinds were 
directed eastward. The track UFRGS-PV-0203-G (formerly UFRGS-PV-0003-J/K 
of Dentzien-Dias et al. 2007) was collected from the dunes of this site; 

RSST (Rosário do Sul, Sanga do Torneado; UTM 21 J 0679626/6651467): this 
outcrop is composed of a succession of conglomeratic and fine sandstones of fluvial 
origin and sandstones of eolian origin (Deiques 2023). The only track found here is 
UFRGS-PV-0207-G, which was collected from inside the main ravine (see Fig. 3.4b); 

RSTP (Rosário do Sul, Touro Passo; UTM 21 J 0684252/6653733): composed of a 
succession of eolian and lacustrine sediments. All tracks remain in situ (Dentzien-
Dias et al. 2007);
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SLCP (Santana do Livramento, Cerro Palomas; UTM 21 J 0656439/6588052): 
outcrop adjacent to the BR-158 highway, km 549. From base to top there is a succes-
sion of sandstones correspondent to eolian dunes, sheets of eolian sand, lacustrine 
layers and a new succession of dunes (Dentzien-Dias et al. 2007). Sauropod tracks 
occur in the sand sheet bed and remain in situ. Invertebrate traces occur in the top of 
the outcrop (Fig. 3.3e). 

Besides the sites described above, all from the southwestern area of Rio Grande 
do Sul, there is an enigmatic occurrence at Novo Treviso (Faxinal do Soturno munic-
ipality, central zone of the Rio Grande do Sul State; UTM 22 J 267188/6731040). 
This occurrence is discussed in Sect. 3.5, under the light of new data. 

In Uruguay, sauropod, theropod and ornithopod tracks occur in the Cañada del 
Ombú I and II localities, respectively at the km 262.5 and 262.4 of the Ruta 26 at the 
Tacuarembó department (Mesa and Perea 2015). 

3.3 Footprints: Diversity and Paleobiological Interpretation 

3.3.1 Sauropod Tracks 

Sauropod tracks (Fig. 3.5) occur in the following sites: RSCC, RSNG, RSSA, 
and SLCP in Brazil (Dentzien-Dias et al. 2007; Deiques 2023) and at Cañada del 
Ombú I in Uruguay (Mesa and Perea 2015). Apparently, only the tracks in SLCP and 
Cañada del Ombú I represent true tracks, because of their tridimensional morphology 
and the presence of marginal ridges following the track outline and sediment filling 
the track shaft. All remaining are composed of rounded, digitless and shallow under-
tracks, with a mean diameter of 50 cm and up to 45 cm depth (Dentzien-Dias et al. 
2007, 2008; Francischini et al. 2015). All of the known tracks are pes prints, except 
by a single manus track found in the SLCP site (Fig. 3.5b, c). It is D-shaped and 
is placed just anteriorly to the pes imprint of the same side, evidencing a heteropod 
producer (Dentzien-Dias et al. 2012). According to Francischini et al. (2015), the 
mean pelvic girdle height estimation (measurement following Thulborn 1989) of the  
sauropod trackmakers of the Guará Formation is 2.92 m, but they could reach the 
maximum height of 3.12 m.

Two morphotypes of sauropod trackways were recognized in the Guará Forma-
tion by Dentzien-Dias et al. (2007), following the proposition of Farlow (1992) and 
Lockley et al. (1994a): in the wide-gauge trackways the autopodia are placed away 
from the trackway midline; contrasting, in the narrow-gauge trackways manus and 
pes tracks are closer to the midline. The occurrence of wide- and narrow-gauge 
trackways in the Guará Formation was, then, followed by the subsequent papers 
(Dentzien-Dias et al. 2008, 2012; Francischini et al. 2015). Nevertheless, quantita-
tive methods for sauropod trackway classification using their gauge were proposed 
by Romano et al. (2007) and Marty et al. (2010), where the trackway gauge can 
also be accessed by calculating parameters, such as the trackway ratio (TR) and the
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Fig. 3.5 Sauropod tracks from the Guará Formation, Upper Jurassic of Brazil. a–c Trackway 
(“south trackway” of Dentzien-Dias et al., 2007) from the Cerro Palomas (SLCP) locality. 
a A manus-pes couple is depicted in b and c; d–e Very wide-gauge trackway from the Cerro 
Caverá (RSCC) locality, seen in oblique (d) and perpendicular (e) views. f Wide-gauge trackway 
from the “Saurópodes” (RSSA) locality in oblique view; g Detail of the track RSSA-5 (in perpen-
dicular view), showing the extensive zone of disturbed sediment around it. Scale bars: 15 cm b, c, 
30 cm d, 1 m  e, and 12 cm f, g
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ratio between the width of the angulation pattern and the corresponding track length 
(WAP/PL for pes tracks and WAM/ML for manus tracks). TR and WAP/PL values 
for the Guará-Batoví sauropod trackways are provided in Table 3.2 and indicate that 
they rather represent narrow- to very wide-gauges. According to Dentzien-Dias et al. 
(2007, 2012), a narrow-gauge trackway also occurs in the SLCP site (named by them 
as the “south trackway”; Fig. 3.5a–c). However, new fieldwork data suggest that it 
can be actually composed by two independent rows of tracks, positioned near paral-
lelly. Therefore, for this instance, the narrow-gauge morphotype remains restricted 
to the Cañada del Ombú I trackway B. 

These morphotypes of trackways were recognized in several localities around 
the world (Farlow 1992; Lockley et al. 1994a, 1994b; Wilson and Carrano 1999; 
Marty et al. 2010), being ichnotaxonomically correspondent to the ichnogenera 
Brontopodus (wide-gauge trackways), Parabrontopodus and Breviparopus (these 
two latter narrow-gauge trackways) (Dutuit and Ouazzou 1980; Farlow et al. 1989; 
Lockley et al. 1994a). 

Although the Guará-Batoví outcrops have preserved narrow- to very wide-gauge 
trackways, the ichnotaxonomical assignation of them are still to be done. The lack 
of any type of digit impression in these tracks precludes a proper assignment and, 
therefore, the access to the true ichnodiversity of sauropod trackmakers. Some digit-
less sauropod ichnotaxa (e.g., Titanopodus and Rotundichnus) have been proposed 
(Hendricks 1981; González-Riga and Calvo 2009), but we believe that the lack of digit 
impressions in the Guará-Batoví tracks is rather an ichnotaphonomic artifact than a 
true morphological feature. In addition, pes tracks from the Guará-Batoví are nearly 
rounded, differing from the longer than wide pattern of Brontopodus and Parabron-
topodus pedes. The predominance of pes tracks also precludes the estimation of the 
heteropody ratio, which is a main ichnotaxobasis for sauropod ichnotaxonomy. 

Wide-gauge trackways and their respective ichnotaxa are usually assigned 
to titanosauriform sauropods (Brachiosauridae, Euhelopodidae, Titanosauria and

Table 3.2 Estimated parameters for the Guará/Batoví sauropod tracks and the main sauropod 
ichnotaxa. The trackway ratio (TR) follows Romano et al. (2007) and the ratio between the width 
of the angulation pattern and the pes length (WAP/PL) follows Marty et al. (2010). Breviparopus, 
Brontopodus and Parabrontopodus are represented by their type materials (Marty et al. 2010). The 
data from the Cañada del Ombú localities were taken from Mesa and Perea (2015) 

Sauropod trackway TR (%) WAP/PL Gauge 

Breviparopus 50.2 0.9 Narrow 

Parabrontopodus 51.9 0.87 Narrow 

Brontopodus 36.04 1.46 Wide 

RSCC 25.97 2.97 Very wide 

RSSA 40.30 1.52 Wide 

SLCP (north trackway) 29.06 2.44 Very wide 

Cañada del Ombú A 45.86 1.14 Medium 

Cañada del Ombú B 52.06 0.92 Narrow 
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related forms; see Lockley et al. 1994a and Wilson and Carrano 1999), but this 
direct correlation is contested by some authors (e.g., Santos et al. 1994). Indeed, 
Titanosauriformes were not recorded in Late Jurassic of South America so far, being 
rare in the entire Gondwana in this time interval. Although there are several anatom-
ical features on the limbs and girdles of Titanosauria species that can be directly 
related to the posture of the group (see García et al. 2015), D’Emic (2012) argued 
that some non-titanosaurian sauropods (such as the macronarian Tehuelchesaurus and 
the brachiosaurid Giraffatitan) also have the architecture required to produce wide-
gauge trackways. For Henderson (2006), the ability to produce wide-gauge track-
ways is widespread among Sauropoda and evolved independently in every lineage 
in which species exceeded 12 tons. Based on these data and on the fact that the 
Guará-Batoví trackways do not preserve any other diagnostic feature apart from the 
gauge, we are not able to assign them to any particular sauropod taxon. Even though 
the track-trackmaker correlation for the Guará-Batoví trackways is still pending on 
better preserved materials, the disparity in posture recorded in the narrow- to very 
wide-gauge trackways could reflect a diverse sauropod fauna. 

3.3.2 Theropod Tracks 

Theropod tracks are tridactyl, mesaxonic and present digits terminating into claws 
and, usually, a V-shaped or bilobated “heel” (Fig. 3.6). The Guará Formation theropod 
tracks are 17–51 cm long and 15–30 cm wide and, except by the trackways composed 
of RSCT-1–RSCT-3 and RSCT-4–RSCT-6, they are found mainly isolated (Dentzien-
Dias et al. 2007; Francischini et al. 2015). Theropod tracks occur in the RSCT, RSRS, 
RSSJ, and RSST sites in Brazil (Dentzien-Dias et al. 2007; Deiques 2023) and at the 
Cañada del Ombú II locality of Uruguay (Mesa and Perea 2015), where they have 
a presumed affinity to Therangospodus. This affinity, however, is not followed here 
because of the lack of fine details. Indeed, except for UFRGS-PV-0207-G (found at 
RSST; see below), all the theropod tracks from the Guará-Batoví unit are composed 
of undertracks.

The true track UFRGS-PV-0207-G (Fig. 3.6c, d) was found inside a ravine at 
the RSST site. It is an isolated left track of 17.8 cm in length and 16.7 cm in width 
(length/width ratio: 1.08) which has short and blunt digits. Despite its size, this track 
is quite robust and presents a weak mesaxony (anterior triangle length/width ratio of 
0.368; sensu Lockley 2009). These latter characters approximate the track UFRGS-
PV-0207-G to the ichnogenera Iberosauripus Cobos et al. 2014 and Jurabrontes 
Marty et al. 2017 from the Upper Jurassic of Europe. A detailed ichnotaxonomical 
analysis of this track is in progress (Deiques, 2023) and will be published elsewhere 
in the future. Using the methods proposed by Thulborn (1989), the trackmaker hip 
height can be estimated at 81.5 cm. 

Because there are no completely preserved feet of Late Jurassic large 
ceratosaurians or non-coelurosaurian tetanurans besides Allosaurus (Rauhut et al. 
2018), a synapomorphy-based track-trackmaker correlation (sensu Carrano and
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Fig. 3.6 Theropod tracks from the Guará Formation, Upper Jurassic of Brazil. a, b track RSCT-
1 from the Cerro Torneado (RSCT) locality; c, d track UFRGS-PV-0207-G, from the Sanga do 
Torneado (RSST) locality; e, f unnamed track from the Cerro Torneado (RSCT) locality; g, h 
unnamed track from the Cerro Torneado (RSCT) locality. Scale bars: 12 cm (a, b and e, f), 5 cm 
(c, d) and 16 cm (g, h)

Wilson 2001) of the Guará-Batoví tracks is debilitated. However, the similarity of 
UFRGS-PV-0207-G with Iberosauripus and Jurabrontes led us to speculate about 
its trackmaker. Cobos et al. (2014) correlated robust tracks with weak mesaxony 
(their Ichno-Group 2, which includes Iberosauripus and similar tracks) from the 
Tithonian–Berriasian of Spain to robust megalosaurids, such as Torvosaurus. More  
slender and elongated tracks (i.e., the Ichno-Group 1 of Cobos et al. 2014, which 
includes Bueckeburgichnus, Hispanosauripus and Megalosauripus) are assigned to 
allosaurids. Marty et al. (2017) agreed with this proposition and, based on the weak 
mesaxony and wide “heel”, included the ichnogenus Jurabrontes in the Cobos’ 
et al. (2014) ichno-group 2. Indeed, Torvosaurus sp. teeth were found in the Batoví 
Member of the Tacuarembó Formation (Soto et al. 2020b), reinforcing the possi-
bility of the trackmaker of UFRGS-PV-0207-G being a megalosaurid. Considering 
the size of UFRGS-PV-0207-G (in comparison to other Late Jurassic robust tracks 
and to the size of the teeth found in Uruguay; Belvedere et al. 2019; Soto et al. 
2020b), it could have been produced by a smaller taxon or even a juvenile individual. 
Other tracks with relatively longer digit III also occur in the Guará-Batoví unit (see, 
for example, Fig. 3.6e–h), probably represent different ichnotaxa and trackmakers 
(possibly ceratosaurids; Francischini et al. 2015). A deeper discussion about these 
tracks and their supposed trackmakers can be seen in Deiques (2023).
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3.3.3 Ankylosaur Tracks 

The first record of ankylosaurian tracks in the Guará Formation was published by 
Francischini et al. (2018), who described a trackway composed of four consec-
utive pes (RSCT-10, RSCT-11, RSCT-13 and RSCT-14) and one manus (RSCT-
12) from the Cerro Torneado locality (Fig. 3.7a, b). In spite of being undertracks, 
the morphology of these tracks are worth noting, mainly because of their clear 
tetradactyly and paraxony, contrasting to all previous known tracks from both the 
Guará Formation and the Batoví Member of the Tacuarembó Formation until that 
moment. The paraxonic pes presents four short and blunt digits and a broad heel. The 
manus is considerably smaller (with evident heteropody) and is positioned antero-
laterally to the pes. Similar to the pes tracks, the manus is tetradactyl and parax-
onic, but is comparatively much more anteroposteriorly short and is medio-laterally 
symmetric. All of the preserved digits lack claw marks. A new material (UFRGS-
PV-0208-G; Fig. 3.7c, d) was recently found in the same locality and its proper 
description will be published elsewhere in the future (Deiques 2023).

Ankylosaur tracks are scarce around the world, with few Cretaceous ichnosites 
producing well preserved vestigia of these animals (see McCrea et al. 2001 for a 
review). Among them, three ichnospecies can be unambiguously assigned to anky-
losaurs due to their morphology and age: Ligabueichnium bolivianum Leonardi 1984, 
Metatetrapous valdensis (Nopcsa 1923), and Tetrapodosaurus borealis (Sternberg 
1932). Ligabueichnium, from the Upper Cretaceous of Bolivia, differs from the Guará 
ankylosaurian tracks by presenting pentadactyl pes, which completely overprints the 
manus (Leonardi 1984). Tetrapodosaurus borealis is the most ubiquitous ichnotaxon, 
occurring in several Aptian–Cenomanian sites of North America (McCrea et al. 2001; 
Lockley et al. 2021), with a putative Late Jurassic record (Hups et al. 2008) pending 
confirmation. Although there are many similarities between Tetrapodosaurus and 
the tracks from the Guará Formation, they differ mainly in: (i) the number of digits 
in the manus (Tetrapodosaurus is pentadactyl, while RSCT-12 is tetradactyl); (ii) the 
shape of the proximal margin of the manus (concave in Tetrapodosaurus and convex 
in RSCT-12); and (iii) the proportions of the pes (Tetrapodosaurus have longer than 
wide pes and the RSCT tracks have the inverse proportion) (Sternberg 1932; McCrea  
2000). Regarding Metatetrapous valdensis, from the Lower Cretaceous Bückeberg 
Formation of Germany, it is very similar to the RSCT tracks described here (Francis-
chini et al. 2018). Indeed, the assignment of the Brazilian tracks to this ichnospecies 
was pending on the discovery of new and better-preserved materials, which was 
partially solved by the discovery and collection of UFRGS-PV-0208-G. 

During the Kimmeridgian–Tithonian interval, there are few dinosaur taxa that 
share the combination of quadrupedity, heteropody and tetradactyly, characters 
present in the RSCT tracks described by Francischini et al. (2018). Late Jurassic 
stegosaurs and ornithopods, for example, are mainly tridactyl during that period and 
some species from the latter group can walk bipedally (Lockley and Hunt 1998; 
Whyte and Romano 2001; Díaz-Martínez et al. 2015). Ceratopsid pes tracks are also 
tetradactyl and paraxonic pes tracks (McCrea et al. 2001), but the occurrence of
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Fig. 3.7 Ankylosaur tracks from the Guará Formation, Upper Jurassic of Brazil. a, b pes (RSCT-11) 
and manus (RSCT-12) tracks from the Cerro Torneado (RSCT) locality; c, d Track UFRGS-PV-
0207-G, also from the Cerro Torneado (RSCT) locality. Scale bars: 30 cm (a, b) and 5 cm (c, 
d)

these dinosaurs in the Guará Formation is unlikely because they are chronostratigra-
phycally restricted to the Cretaceous. Based on these differences, Francischini et al. 
(2018) regarded the RSCT tracks as ankylosaur-made, with the osteological record, 
the geographical distribution and the temporal range of the group suggesting that the 
trackmakers possibly were nodosaurids. 

The South American record of Ankylosauria is scarce, with few osteological 
and ichnological materials coming from the Cretaceous of Argentina and Bolivia 
(see Francischini et al., 2018 for a synthesis). Some trackways from the purported 
Upper Jurassic-Lower Cretaceous La Puerta Formation of Bolivia (Tunasniyoj 
locality) were described by Apesteguía and Gallina (2011) and, along with the
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Guará record, they could represent the oldest occurrence of ankylosaurs in South 
America. However, the Bolivian site was reconsidered as belonging to the Upper 
Triassic Ipaguazú Formation and the tracks assigned to cf. Brachychirotherium isp. 
(Apesteguía et al. 2021). Consequently, the ankylosaurian tracks from the RSCT 
locality represent the only Jurassic occurrence of these armored dinosaurs in South 
America and the oldest record of the group for the entire Gondwana. 

3.3.4 Ornithopod Tracks 

Ornithopods tracks are underrepresented in the Guará Formation (Fig. 3.8). They 
are small- to large-sized tridactyl tracks, generally almost as wide as long (length/ 
width ratio: 0.96–1.26) with low mesaxony. Different from theropod tracks, they are 
medio-laterally subsymmetrical. One trackway from the RSCT locality, composed 
of the tracks RSCT-4–RSCT-6 (Fig. 3.2c), and three isolated tracks (from the RSCT, 
RSGV and RSJR localities) were previously attributed to this group (Dentzien-Dias 
et al. 2007; 2008). The mentioned trackway is composed of relatively large footprints 
(43 cm long and 34 cm wide). The size of the isolated tracks is 15–25 cm long and 
13–26 cm wide (Dentzien-Dias et al. 2007). 

Fig. 3.8 Ornithopod tracks from the Guará Formation, Upper Jurassic of Brazil. a, b Track RSCT-
3 from the Cerro Torneado (RSCT) locality; c, d Track RSCC-6 from the Cerro Caverá (RSCC) 
locality. Scale bars: 12 cm a, b and 5 cm  c, d
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A new ornithopod track (RSCC-6) was recently found in the Cerro Caverá locality 
(Fig. 3.8c, d). This track is tridactyl, mesaxonic, with rounded toes and a broad, U-
shaped “heel”. It is 13 cm long by 13 cm wide (length/width ratio: 1) and no claw 
marks can be seen in this track. The digit III is relatively longer than the other 
and the divarication angle is high, but it is not clear if these features can represent 
preservational artifacts or not (all ornithopod tracks found so far in the Guará-Batoví 
are interpreted as undertracks). In the Uruguayan Cañada del Ombú I locality, only 
one isolated ornithopod track was described (their Track C; Mesa and Perea 2015). 
It differs in many morphological aspects from the ornithopod tracks that occur in 
the Guará Formation of Brazil. The footprint described by Mesa and Perea (2015) is  
wider (20 cm) than longer (18 cm) (length/width ratio: 0.9), with a U-shaped heel. 
The digits are rounded and blunt, without claw marks (Mesa and Perea 2015). The 
Brazilian ornithopod tracks, on the other hand, have relatively well-developed digit 
III (Fig. 3.8), contrasting to the near rounded overall morphology of the Uruguayan 
one. Manus tracks were never found in this formation, neither in Brazil, nor in 
Uruguay. 

The rounded morphology and relatively small size of the “heel” impression of the 
RSCT-3 and RSCC-6 tracks (Fig. 3.8) are very similar to the expected for the Díaz-
Martínez’ et al. (2015) Group 1 of ornithopod tracks, which includes the ichnogenus 
Iguanodontipus Sarjeant et al. (1998) and other indeterminate materials within the 
ichnofamily Iguanodontipodidae. However, as mentioned above, the relatively long 
digit III is not in accordance with the diagnosis of Iguanodontipus (which have 
digits II-IV of similar length). Any of the tracks known so far present the nearly 
parallel-oriented digits or the quadripartite configuration in the pes tracks, which 
are typical of some ornithopod ichnotaxa (such as “Amblydactylus”, Caririchnium 
and Hadrosauropodus, for example; Currie and Sarjeant 1979; Lockley et al. 2014) 
or the Groups 2 and 3 of Díaz-Martínez et al. (2015). New and better-preserved 
material is required for a more precise ichnotaxonomy. If confirmed, the Guará tracks 
would represent the oldest record of Iguanodontipodidae, filling the gap noticed by 
Díaz-Martínez et al. (2015). 

The body fossil record of Ornithopoda in South America is still restricted to the 
Cretaceous (Coria 2016), precluding a proper synapomorphy-based or coincident 
track-trackmaker correlation. The rarity of ornithopod tracks in the Guará Formation 
is one more evidence that these ornithischians were not common elements in the 
South American Late Jurassic ecosystems. 

3.3.5 The Enigmatic Structures from Novo Treviso 

Originally, Cargnin et al. (2001) reported the presence of a “set of rounded structures 
of different diameters” at an outcrop of the Caturrita Formation in Novo Treviso 
(Fig. 3.9a–c). Some of these structures are cylindrical, with vertical walls, while 
others were described as 30 cm wide and 15 cm long tridactyl tracks (Cargnin et al. 
2001). The structures occur in massive fine sandstones, often filled with grayish
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Fig. 3.9 Cylindrical structures found in several geological units in Rio Grande do Sul state, Brazil. 
a–c structures found in the sandstones (Guará Formation) from Novo Treviso (Faxinal do Soturno 
municipality) and described by Cargnin et al. (2001) and Silva et al. (2007) as tetrapod tracks. 
Their genesis could be related to physical and/or chemical weathering of the matrix; d Structures 
found in sandstones (uncertain unit and age) from Santa Maria municipality; e, f structures found 
in sandstones (Botucatu Formation) from Rio da Ilha (Taquara municipality); g, h Structures found 
in weathered gneiss or granite from Canguçu municipality. Arrow in h indicates the concordant 
disposition between the cylindrical structure and the matrix plain of fault (white intermittent lines). 
Images a–c and d kindly ceded by Dr. Tânia L. Dutra and Dr. Cesar L. Schultz, respectively. Map 
legend: 1. Santa Maria, 2. Faxinal do Soturno, 3. Taquara, 4. Canguçu
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muddy sandstones with high amounts of iron oxide. According to Cargnin et al. 
(2001), the most probable trackmakers would be synapsids because of their abun-
dance in the presumed Caturrita Formation (Late Triassic in age). Posteriorly, these 
structures were restudied by Silva et al. (2007), who described them as rounded (in 
planview) or semi-cylindrical tubes (in cross section) with diameter of 20 to 50 cm; 
“finger-like projection” structures width between 16 and 30 cm and length between 
12 and 27 cm; and structures composed of the combinations of the referred circular 
structures and kidney-shaped, with mean size of 35 cm. Most of these structures 
are more than 40 cm deep deformations in the strata. Silva et al. (2007) interpreted 
these as large tetrapod tracks which disrupted the substrate homogeneity by foot 
pression during the track registration. The finger-shaped projections would corre-
spond to undertracks produced by the same trackmakers. Although morphological 
details were lacking, Silva et al. (2007) assigned these tracks to early-diverging 
sauropodomorphs.

Subsequently to the publication of the paper by Silva et al. (2007), Zerfass (2007) 
published a geological map of Novo Treviso region, indicating that the referred 
sandstones are part of the Guará Formation, leading Silva (2008) to attribute the 
structures to sauropod and theropod dinosaurs. On the other hand, a new analysis 
made by our team in Novo Treviso and other localities allowed us to propose a new 
hypothesis on the nature of these structures (Francischini et al. 2017). Approximately 
50 structures similar to those from Novo Treviso were found in a locality at the Rio 
da Ilha district, Taquara municipality, northeast Rio Grande do Sul state (UTM 22 J 
528374.02/6721031.64; Fig. 3.9e, f). The sandstones of Rio da Ilha site present large-
sized cross-stratification and inverse grading, suggesting that the matrix is part of the 
eolian deposits of the Botucatu Formation (Lower Cretaceous). Similar cylindrical 
structures were also found in weathered gneiss or granites of the crystalline shield 
at Canguçu (UTM22J 346617.72/6514793.84; Fig. 3.9g, h). The presence of these 
structures in non-sedimentary rocks is strong evidence of their non-biogenic nature. 
The disposition of some of these structures along the fault plane corroborates this 
hypothesis. Besides, the lack of evidence of perturbation in the subjacent strata 
suggest that their genesis could be related to physical and/or chemical weathering of 
the matrix, producing depressions (weathering pits or pans) that are filled posteriorly 
or concomitantly to their generation. Weathering pits or pans are erosional features 
produced by differential erosion in outcrops of large horizontal exposition of rocks 
(e.g., Paradise 2022). Although it is not under the scope of this work to elucidate this 
issue, our observation indicates a non-biogenic nature for the Novo Treviso structures 
(Francischini et al. 2017). Systematic research is still needed for better understanding 
these enigmatic structures and, for this instance, we do not regard them as dinosaur 
footprints.
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3.4 Paleogeographical Distribution of the Footprints 

According to Bonaparte (1980) there are some affinities among the South American 
sauropods and theropods with those found on the Morrison Formation (Kimmerid-
gian–Tithonian of the USA). Consequently, Gondwana was not totally isolated during 
the Late Jurassic, and some degree of faunal interchange with Laurasia could perhaps 
occur. The Guará-Batoví would be, in this case, a witness of this paleobiogeographic 
framework, yielding both the occurrence of widespread dinosaur genera (such as 
Torvosaurus and Ceratosaurus; Soto et al. 2020a, b), and ichnological evidence of 
the presence of nodosaurid ankylosaurs (Francischini et al. 2018). 

The absence or rarity of Jurassic faunas in latitudes lower than 35°S in South 
America was noticed by Bonaparte (1979, 1996), who interpreted this situation as 
a limitation imposed by a desert environment that restricted geographically and 
chronologically the occurrence of tetrapods. Even though, for Bonaparte (1979), 
such conditions are represented by the Botucatu desert (currently regarded to as Early 
Cretaceous; see Francischini et al. 2015), other geological units (e.g., the Pedreira 
Sandstone and possibly the Pirambóia Formation in Brazil) can attest to the remark-
ably arid conditions present in the low latitude regions of South America during the 
Jurassic. The possibility that this arid belt would work as a biogeographic barrier for 
fauna dispersal is still to be tested, but apparently it does not prevent some degree of 
faunal interchange. Actually, the occurrence of the Ichno-Group 2 (i.e., Iberosauripus 
or similar forms) of Cobos et al. (2014), represented by UFRGS-PV-0207-G, in the 
Guará-Batoví enlarges the geographical distribution of such group of theropod tracks 
and, consequently, of their trackmakers. Except for some occurrences in Morocco 
(Belvedere et al. 2019), this robust theropod track morphotype was so far restricted 
to the European Archipelago. 

Regarding the temporal distribution of sauropod trackways, there is a dominance 
of narrow-gauge trackways in Jurassic strata, while wide-gauge trackways are more 
common in Cretaceous (Lockley et al. 1994a, 1994b; Wilson and Carrano 1999). 
According to Wilson and Carrano (1999), this transition of dominance occurred 
during the Kimmeridgian–Tithonian interval, suggesting an evolutionary trend on 
the increasing in size and changing in the position of the gravity center (migrating 
anteriorly), which implies in a larger participation of the forelimbs in the body support 
and in a more columnar posture. The presence of narrow- to very wide-gauge track-
ways in the Guará-Batoví unit reinforces the interpretation of its age as Kimmerid-
gian–Tithonian, interval in which a wide spectrum of trackway morphotypes are 
contemporaneous, suggesting that different groups of sauropod trackmakers could 
have inhabited the region in the Late Jurassic. This is in accordance with the high 
diversity of sauropod lineages found in some Upper Jurassic localities of Gondwana 
(e.g., Bonaparte 1996; Mannion et al. 2019).
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The Guará-Batoví unit shares some dinosaur taxa (at least in a more inclusive 
perspective) with other Upper Jurassic units around the world (see a discussion in 
Francischini et al. 2018). Notably, megalosauroid theropods are well represented 
in the Guará-Batoví by Torvosaurus sp. teeth and the robust track UFRGS-PV-
0207-G, but are also important components of the Kimmeridgian–Tithonian fauna 
recovered from the Tendaguru (Tanzania; Janensch 1920, but see Soto et al. 2020b), 
Morrison (USA; Galton and Jensen 1979), Villar del Arzobispo (Spain; Cobos et al. 
2014; Malafaia et al. 2017), Alcobaça and Lourinhã (Portugal; e.g., Hendrickx and 
Mateus 2014) formations. This faunal similarity is reinforced by the occurrence of 
Ceratosaurus sp. and other high-level taxa in the Uruguayan Batoví Member, as well 
as Metatetrapous-like ankylosaur tracks in the Brazilian RSCT locality (Francischini 
et al. 2018). 

3.5 Paleoenvironmental and Paleoclimatic Contexts 

Although some of the sauropod tracks (likely those from the SLCP and the Cañada 
del Ombú I localities) from the Guará-Batoví unit are interpreted as true tracks, it is 
noteworthy the predominance of pedes in relation to manus. Several localities around 
the world are known by having sauropod pes-only or pes-dominated trackways (see 
Falkingham et al. 2012 for examples) and, among all hypotheses proposed to explain 
this phenomenon, the ‘Goldilocks Effect’ (Falkingham et al. 2011) is the most widely 
accepted. Accordingly, manus- or pes-only trackways would be results of the specific 
interaction of the position of the center of mass of the animal, its relative autopodium 
surface areas and the substrate shear strength. For Falkingham et al. (2011), sauropod 
pes-only or pes-dominated trackways would be produced by animals with a more 
posterior center of mass position (a plesiomorphic feature within Sauropodomorpha). 
Considering the Guará-Batoví record, it seems contradictory that the wide- to very 
wide-gauge sauropod trackways from RSCC, RSSA and SLCP are pes-dominated, 
because it would be expected that sauropods with massive construction of pectoral 
girdles and forelimbs (i.e., those closely associated with wide-gauge trackways) 
present an anteriorly-positioned center of mass (Henderson 2006) and, therefore, 
be more able to produce manus-only or manus-dominated trackways. On the other 
hand, pes-dominated trackways seem to be more commonly found in non-cohesive 
sandy substrates (Falkingham et al. 2012). Considering this and the difficulty in 
ichnotaxonomic assignation for sauropod trackways (but also for tracks produced 
by other groups), Francischini (2018) considered that the ichnological record of the 
Guará-Batoví unit is deeply affected by the ‘Goldilocks Effect’.
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Invertebrate traces can be observed in different outcrops and are assigned to Taeni-
dium barretti, Beaconites coronus and Arenicolites isp. that are known to occur in 
wet environments (Nascimento et al. 2023). Conchostracans are also found, both in 
the near the Arroio do Beco locality of Brazil and in two localities of Uruguay (Ruta 
5, km 396 and Cerro Batoví Dorado), where they are identified as the species Orthes-
theria (Migransia) ferrandoi (Yanbin et al. 2004). These occurrences suggest that 
the eolian deposits of the Guará-Batoví unit would present some degree of moisture 
and, consequently, the environment does not represent an arid and dry desert. The 
presence of unionoid bivalve (Martínez and Figueiras 1991; Martínez et al. 1993), 
fish (e.g., Soto and Perea 2010; Toriño et al. 2021), turtle (Perea et al. 2014) and 
pholidosaurid crocodylian (Fortier et al. 2011) remains in the (perennial?) fluvial 
beds of Uruguay reinforces this assumption. 

Mesozoic laminated eolian interdune or sand-sheet are known to preserve many 
dinosaur tracks (Loope and Milàn 2016). In these laminated beds the undertracks 
often go deep in the sediment. According to Loope and Milàn (2016), the surface 
of damp interdunes can be lightly cemented by salt, so when the dinosaur stepped 
in the sand not only the sediment directly under the feet was deformed, but also a 
large area around the registered track. This preservation can be seen in the dinosaur 
tracks from the Middle Jurassic Entrada Formation (USA; Loope and Milàn 2016 and 
references therein), but also in the tracks from the Guará-Batoví (see for example, 
Figs. 3.5d–g, 3.7a–d, 3.8c, d). Even though the North and South American units 
were deposited under similar contexts, the presence of salts in the Guará-Batoví is 
still unknown. Modern erosion (most of which anthropic due to intense traffic of 
agricultural machinery or the activity of bulldozers on the dirty roads) of such track-
bearing sandstones reveal the complex and somewhat distorted undertracks described 
here (Fig. 3.10). More data on the substrate properties of the Guará-Batoví tracksites 
are still needed for better understanding its impact on the preservation of the tracks 
and, consequently, the composition and diversity of the dinosaur ichnofauna of this 
Upper Jurassic unit (Fig. 3.11).

3.6 Conclusions 

The Guará-Batoví unit from Brazil and Uruguay is one of the most important windows 
for the study of Late Jurassic environments and their biota in South America. For 
more than 20 years, our team has been prospecting, collecting and studying the fossil 
record of this unit in the Brazilian territory, with many findings being published. 
Here we provided a concise outlook about the dinosaur tracks and trackways from 
the Guará-Batoví unit, focusing on our findings in Rosário do Sul and Santana do 
Livramento municipalities of the Rio Grande do Sul state. Saurischian (Sauropoda 
and Theropoda) footprints are dominant in the eolian sand sheet deposits of the 
Guará-Batoví, with the sauropod lineage represented only by its tracks and track-
ways. Ornithischian tracks are rarer, but at least two lineages (Ornithopoda and 
Ankylosauria) occur in the Guará-Batoví strata.
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Fig. 3.10 Registration and erosion of the dinosaur undertracks of the Guará-Batoví unit, evidenced 
by theropod tracks. a track registration and the true track UFRGS-PV-0207-G, from the Sanga 
do Torneado locality. Scale bar: 5 cm; b partially eroded track with some details still preserved 
(unlabeled track from the Cerro Torneado locality). Scale bar: 12 cm; c very eroded track with the 
lost of morphological detail, represented by UFRGS-PV-0206-G, from the Cerro Torneado locality. 
Scale bar: 7 cm

The Guará Formation was formalized in the early 2000’s and since then, the 
knowledge about the Late Jurassic dinosaur ichnofauna was notably expanded. Up 
to this point, sauropod, theropod, ankylosaur and ornithopod tracks were found in 
Brazil and, together with the body fossils from the Uruguayan territory, comprise 
an important dinosaur record for South America, often compared to the so-called 
Morrison, Lourinhã and Tendaguru strata. New data are still to be published and future 
contributions will shed more light on the composition, diversity and preservation of 
the Guará-Batoví dinosaurs. Meanwhile, activities on divulgation and popularization 
of the Dinosaur Ichnology are at full swing.
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Fig. 3.11 The Late Jurassic Guará/Batoví paleoenvironment and the probable producers of the 
theropod and ankylosaur dinosaur tracks. In this scene, a megalosaurid is defending its meal (a 
nodosaurid carcass) from the assault of a ceratosaurid. Artwork by Guilherme Gehr
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Chapter 4 
Desert Cretaceous Dinosaurs: The 
Botucatu Paleodesert and the Footprints 
Across the Dunes 

Marcelo Adorna Fernandes , Luciana Bueno dos Reis Fernandes , 
and Júlia Beatrice Schutzer 

4.1 Introduction 

In Brazil, there are many ichnofossils-bearing sites with tetrapod footprints, including 
sometimes even tracks of dinosaurs. Among the main localities with dinosaur foot-
prints, one stands out, the region of the Araraquara municipality, located in the state 
of São Paulo. In this locality, during the Mesozoic Era, there was a paleodesert 
where today, alongside invertebrate, mammal and probably lacertoid tracks, there 
can be found small- and medium-sized theropod and ornithopod dinosaur footprints. 
Another important area with dinosaur tracks is around Nioaque, in the Mato Grosso 
do Sul State. 

The dinosaur footprints are common in the sandstones of the Botucatu Formation 
(Paraná Basin). In situ, levels with dinosaur tracks in this formation were found in 
some tracksites, mainly in the São Paulo State. Ex-situ, in the sidewalks and other 
artificial surfaces, dinosaur trackways from the Botucatu Formation were observed 
and often collected and housed in institutions, from many other towns and other loca-
tions, in southeastern and southern Brazil and Paraguay (Leonardi 1994; Leonardi 
et al. 2007). 

The Araraquara outcrops comprise one of the richest tetrapod ichnosites of South 
America’s Lower Cretaceous, in the Botucatu Formation. This unit is represented 
by reddish sandstones with low-angle (~30°) cross-stratification, medium to large, is 
interpreted as an extensive dune field implanted on the ancient Gondwanan continent 
(Scherer 2000). Its age is Early Cretaceous (Berriasian-Barremian; Brückmann et al. 
2014).
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The first record of a tetrapod trackway for the Botucatu Formation was observed 
in 1911, by Joviano Augusto do Amaral Pacheco, a mining engineer (Pacheco 1913; 
Leonardi and Sarjeant 1986). Friedrich Von Huene (1931) cited this record as the 
first evidence of tetrapod tracks discovered in Latin America. 

Giuseppe Leonardi, in 1976, reconnoitered the origin of the flagstone of Pacheco 
in the quarry Santa Águeda, in the district of Ouro (Araraquara county) and then 
he discovered in this region numerous other quarries with fossil footprints (mainly 
mammal and dinosaur tracks), and also in the paving of streets of the city (Leonardi 
1980). Later, he and others discovered a score of other ichnosites in the same forma-
tion, all around the Paraná Basin (Leonardi 1977, 1980, 1994). Leonardi (1981) 
described the first ichnogenus denominated Brasilichnium elusivum for the Botu-
catu Formation and attributed those footprints to a small mammal. Fernandes and 
Carvalho (2008) performed a diagnostic revision of this same ichnospecies, altering 
the number of functional digits from five to four. 

Two new forms of Mammaliaformes footprints for the Botucatu Formation, 
Brasilichnium saltatorium and Aracoaraichnium leonardii were described by Buck 
et al. (2017a, b). Lacertoid tracks were described by Buck et al. (2022) and attributed 
to possibly Squamata and/or Sphenodontia, suggesting the occurrence of a group 
hitherto unknown to the Botucatu Formation. 

Another ichnotaxon, Brasilichnium anaiti D’Orazi Porchetti et al. 2017, was  
established again for tracks of early mammals. Numerous other locations with the 
fossil footprints of mammals and especially of bipedal dinosaur tracks in the Botu-
catu sandstones were discovered in Brazil, on the western flank of the Paraná basin, 
by Manes et al. (2021), in Mato Grosso do Sul State (MS), in the locality Nioaque and 
surrounding region. There, sediments previously assigned to the glacial Aquidauana 
Formation (Permian) were reinterpreted, also and mainly because of the presence of 
dinosaur tracks, as part of the basal section of the Botucatu Formation. Floodplain 
and residual channel deposits are among the successions that are believed to repre-
sent the lower half of this formation’s sequence in the studied area. The ichnofossils 
that have been found include both isolated tracks of Theropoda and Ornithopoda. 
This is one of the cases in which the discovery of clear dinosaur footprints led to the 
raising, in the stratigraphical column, stratigraphic units that were considered to be 
Paleozoic, at the Mesozoic. 

Regarding invertebrate ichnofossils registered for the Botucatu Formation, there 
is the occurrence of Taenidium type tracks attributed to Coleoptera (Fernandes 
et al. 1988) and others attributed to epistratal invertebrates, possibly insects of the 
ichnospecies Paleohelcura araraquarensis (Peixoto et al. 2020). 

During the recovering of sandstone slabs at the São Bento quarry (21° 49' 03.4''
S e 48° 04' 22.9'' W), in Araraquara (and in other similar ichnosites), between the 
years 1976 to 2005, it was possible to distinguish at least four morphotypes for 
dinosaur footprints, with occurrences of Theropoda and Ornithopoda. One of these 
was attributed to a medium-sized ornithopod (Fernandes and Carvalho 2007). This 
trackway, with 5 hind-footprints (see Fig. 1.15A in Chap. 1), corresponds to the 
largest footprints encountered till this day for this geological unit. More recently, 
Leonardi et al. (2024) described the ichnogenus and ichnospecies Farlowichnus
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rapidus, attributed to a small Theropoda of which a score of trackways, with up 
to 7 footprints were found. The trackmaker of this kind of track was considered by 
Leonardi et al. (2024) related to a Gondwanan theropod family, possibly the ancestral 
theropods of clades such as noasaurids or velocisaurids. There were also registered 
two singular occurrences of liquid extrusion associated with dinosaurs (Fernandes 
et al. 2004). These were denominated, at first, as urolites and later renaming them to 
micturalites was suggested by Fernandes (2020). 

Francischini et al. (2015) suggested that, for the Botucatu Formation, due to 
the aridity, the dinosaur fauna would be represented basically by Theropoda and 
Ornithopoda footprints of reduced sizes, when compared to other Mesozoic units 
of the world. The same climatic condition would be related to the lack of Sauropod 
footprints. 

In the face of the diversity of footprint forms found in the sandstones of the 
Botucatu Formation, the desert paleoenvironment provided conditions to sustain a 
community of organisms of different trophic levels, from detritivores to apex preda-
tors, such as Theropoda. This ichnofauna of diverse dinosaurs and other animals is 
very well represented by the footprints and other traces found at the São Bento quarry 
in Araraquara. 

4.2 Geological Context 

The Late Jurassic to Early Cretaceous Sequence (Supersequence Gondwana III, 
Milani 1997; Milani et al. 2007) includes in the Paraná Basin the aeolian deposits 
of the Botucatu Formation and the basalt flows of the Serra Geral Formation. These 
formations correspond to the São Bento Group (Schneider et al. 1974). While the 
basalts of the Serra Geral Formation cover much of the basin, the Botucatu Forma-
tion crops out (about 4,500 km; Leonardi et al. 2024) mainly on the basin’s borders 
(Fig. 4.1) and in the central region of the basin it is in subsurface. This unit occu-
pies an area of about 1,300,000 km2, covering much of southern and southeastern 
Brazil and marginally, portions of the territory of Argentina, Uruguay, and Paraguay 
(Milani et al. 2007). Desert conditions have existed since the beginning of fissural 
volcanism (approximately 134 Ma) associated with the rupture of Gondwana, some-
times covering the pre-existing aeolian landscape (Assine et al. 2004;Carvalho  2022). 
This volcanism is related to the Paraná-Etendeka province, with its magmatic rocks 
with its flows or volcanic (basic and, secondarily, acidic) outburst (Turner et al. 
1994; Rios et al. 2023). It corresponds to one of the larger igneous provinces (LIP) 
and events, such as the Central Atlantic Magmatic Province (CAMP), with volumi-
nous lava flows and outpourings of correspondent pyroclastic sediments. This event 
is related to the initial moments of rupture of Gondwana and the opening of the 
Atlantic Ocean (Nogueira et al. 2021; Carvalho  2022).

The lower succession of Botucatu Formation (outcrops at Mato Grosso do Sul 
State) presents medium-grained sandstones, in lenticular bodies exhibiting grada-
tional cycles, with associated conglomeratic sandstones. They are interpreted as
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Fig. 4.1 Geological map of Paraná Basin and distribution area of Botucatu Formation, with the 
main localities where dinosaur footprints were found in situ [modified and adapted from “Mapa 
Geológico da Bacia do Paraná” (Almeida and Melo 1981) and Leonardi et al. (2024)

produced by torrential episodes, in a fluvial context, in which there are also footprints 
of bipedal dinosaurs (Manes et al. 2021). However this unit is generally composed of 
medium to fine sandstones, with rounded grains, reddish to brownish, with tangential 
cross-stratification (with a mean ~30° dip) and respectively topsets (with a mean ~5° 
dip) interpreted as a dune field. The cementation of the sandstones is due to micro-
crystalline quartz, chalcedony, opal, celadonite, and calcite. There is the presence of
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infiltrated clays (Rios et al. 2023). Near the top of the formation, mudstones, silt-
stones and fine sandstones with parallel stratification (Almeida and Melo 1981) are  
interpreted as interdune, dry or humid, environments with intermittent playa-lakes 
(Rios et al. 2023). Deserts are dynamic systems with active eolian sedimentation 
because of wind speed, low effective humidity, and limited vegetation cover (Rios 
et al. 2023; Lancaster 1988, 1995; Kocurek and Lancaster 1999). 

The Botucatu deposits were extensive dune fields (Fig. 4.2a, b), with a possible 
alternation of wet and dry moments as a function of changes in the climatic condi-
tions and eventual atmospheric precipitations, which may lead to areas of humid 
interdunes. Very possibly the tracks of mammals, dinosaurs and small invertebrates 
preserved in these sandstones originated in places of greater humidity of this aeolian 
system (Leonardi and Carvalho 2002; Francischini et al. 2015). The Botucatu Forma-
tion presents itself as a broad domain of the dune fields: an extraordinarily huge erg. 
A typical example of this environment is that represented by the transversal dune 
of São Bento quarry at Ouro-Araraquara, so incomparably rich in fossil tracks of 
vertebrates and invertebrates. This dune was studied by Leonardi (1980). Currently, 
the dune is almost destroyed by the progressive excavation for the production of 
street paving material and other building uses. The reduced part that remains of it 
would deserve to be studied in detail as well as what remains of other quarries in the 
same district of Ouro-Araraquara (Leonardi 1994).

The Botucatu Formation is crossed by frequent diabase subvolcanic dikes, which 
represent the exit routes of the eruptive material of the fissural volcanism of the 
Serra Geral Formation, which covered and often intruded sills and lenticular bodies, 
between the units of the Botucatu sandstone succession, also producing contact 
metamorphism. Lenticular bodies of the Botucatu sandstone often remained trapped 
among the igneous rocks of the Serra Geral Formation (intertrap deposits; Nogueira 
et al. 2021). Based on isotopic analyses, the most probable age for the great eruptive 
phenomenon of subcontinental character ranges from 127 to 137 million years old 
(Scherer 2000, 2002; Scherer et al. 2002). It was the largest in the history of the world 
considering the geographical extension and magma volume (excluding the oceanic 
basaltic bottom volcanism). The lava flows trapped in the first aeolian deposits of 
the Botucatu Formation indicate that the transformation of most of the Paraná Basin, 
from a semi-arid region to an area occupied by a huge erg, is around 134.5 ± 2.1 Ma 
(Brückmann et al. 2014; Renne et al. 1992). 

4.3 Footprints: Diversity and Paleobiological Interpretation 

Based on the studies of Leonardi (1989), Leonardi and Oliveira (1990), and Thulborn 
(1990), it is possible to effectively identify two different categories for the dinosaur 
ichnofauna with paleobiological affinities for the Botucatu Formation: Theropoda 
and Ornithopoda. 

It is not easy to attribute a track to a trackmaker, and this is particularly true for the 
ichnofaunas of Botucatu Formation, and it is even harder when it comes to theropods.
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Fig. 4.2 São Bento Quarry in Araraquara, São Paulo State, featuring the exposure of Botucatu 
Formation sandstones (paleodune), and its foresets with a dip of 29° and a height of 15–20 m

When theropod tracks began to be discovered in the Botucatu sandstones in the 
1970s, they were identified as Coelurosaurs (the small theropods) and Carnosaurs 
(the large theropods). The taxonomic and cladistic situation today is much different 
and more complicated. Few skeletons of Late Jurassic and Early Cretaceous Brazilian 
theropods are known. The only dinosaur notable fauna (as known from bones) from 
the Early Cretaceous terrains of South America is that of the La Amarga Formation 
in the Neuquén Basin, Patagonia, Argentina. The common characteristics of South 
American dinosaurs are mostly very different from those of the northern continents, 
because of the probable geographic and biogeographic isolation of South America 
and, more generally, Gondwanan dinosaur faunas from those of northern continents
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(Laurasia) during a large part of the Jurassic and almost all the Cretaceous. Besides, 
reasonably complete foot skeletons are rarely found, and they are usually conservative 
in structure (Leonardi and Carvalho 2021). 

Theropods include several distinct clades and subclades, more than twenty at the 
level of family and superfamily, according to Hendrickx et al. (2015). However, 
because they are found in the Lower Cretaceous terrains of South America, many 
tracks are attributed to trackmakers of the family Abelisauridae Bonaparte and Novas 
1985, probably part of the Ceratosauria. Small Spinosauridae, the sister group of 
Megalosauridae, are other possible theropod trackmakers in Botucatu Formation, as 
specimens similar to Irritator Martill et al. 1996. 

Since the theropod footprints of the Botucatu Formation are always small, 
they may belong to Ceratosauria. Likely producers, as seen for Farlowichnus 
(Leonardi et al. 2024), of such southern small- and medium-size theropod tracks 
are the abelisauroid Noasauridae Bonaparte and Powell 1980 and Bonaparte 
1991, for example, Vespersaurus Langer et al. 2019. Also,  Ligabueino Bonaparte 
1996 (Abelisauridae or, more probably, Noasauridae) from La Amarga Formation, 
Province of Neuquén, Argentina) may be a good candidate, even if one does not 
know well its feet. There are also theropods similar to the later Santanaraptor and 
Mirischia Naish et al. 2004, which is probably a Compsognathidae (Bonaparte 1991). 

In accordance with Weishampel (1990), Ornithopoda represents groups of herbiv-
orous dinosaurs whose hind-feet present three robust and functional digits (II, II and 
IV). As stated by Thulborn (1990), digit III is larger and more robust, while digits 
II and IV are shorter and slightly similar in length. The extremities of the digits 
always present a rounded shape, a trait of short nails or hooves, no claws. Among 
the Ornithopoda, the iguanodontids have a 0–3–4–5–0 phalangeal formula, with 
dorsoventrally flattened nails which are similar to hooves. Generally, the width of 
the Ornithopoda footprints is around 90–115% the size of their length, frequently 
being rounded. The total divergence within digits II and IV is commonly 60° but 
can reach 80°. The interdigital angles are normally similar. The posterior part of the 
Ornithopoda footprints, much like the hypex, are “U” shaped. 

According to Leonardi and Carvalho (2002), the tetrapod trackways of the Ouro 
region’s quarries (and in the sidewalks of the cities of Araraquara and São Carlos) are 
almost always (90–95%) of low quality, with the appearance of rounded or elliptical 
cavities without morphological details. These cavities are frequently accompanied 
by a sandstone crest in the shape of a half-moon or crescent, frequently in the direc-
tion of the strata’s dip, which represents a dislodging of sand by the animal’s feet, 
when in progression through the dunes. Despite the low quality of preservation 
of the footprints, the parameters of the trackways can frequently still allow their 
classification. 

Concerning the shape of the footprints, many of them may differ within the same 
group, or even within the same individual animal, depending on how and in what 
direction it walked, if it was running or trotting, if it was going uphill, downhill, 
diagonally or laterally on the dune. The preservational variations of the fossilized 
footprints in the Botucatu Formation’s sandstones match with aspects related to the
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consistency of the substrate in function of humidity and the different speeds and 
directions, adopted by the animals during their course through the paleodunes. 

At the São Bento quarry, the tracks are disposed in preferential directions. Most of 
the animals of the Botucatu paleodesert crossed the large transverse dunes diagonally. 
In 80% of the occurrences, the preferential direction of their movement was between 
300 and 330°, with some trackways in the opposite direction of 120–150°. Surely the 
direction of least effort on a slope is diagonal, however, it has still not been possible 
to establish the reason as to why there was this directional preference; maybe this 
was a direction that led directly to a water point, analogous to a small oasis. 

According to the dispositions of the digits on the footprints, a group presents toes 
with sharp extremities, suggesting the presence of claws and a “V” shaped (acute) 
hypex, as in most theropods. The other group presents digits with very rounded, hoof-
like extreme phalanges, much like their “U” shaped (obtuse) hypex, characteristic of 
ornithopods. 

Considering the interdigital angles, we can group these footprints of Theropoda 
dinosaurs from the Botucatu Formation in two subgroups or rather, classify them 
into morphotypes: one with angles around 20 and 30° (Morphotype I) and the other 
with angles around 30 and 40°, (Morphotype II). In this second case there are two 
recurring morphological variations of the footprints, possibly because of the direction 
of movement on a slope and the speed developed during walking or running on the 
foreset, or maybe because of the foot anatomy itself. 

According to the same interdigital angle traits, the Ornithopod dinosaur footprints 
may also be organized in two morphotypes, one with interdigital angles around 20 
and 30° (Morphotype I) for larger forms, and around 30 and 45° (Morphotype II) for 
the smaller forms. 

A third type of footprint with extremely elevated interdigital angles and diver-
gence, to the order of 50°, has also been found, however since it is one single sample 
of an isolated footprint, it was not possible to establish with exactness a classifying 
pattern. 

4.3.1 Theropods: Morphotype I - Farlowichnus rapidus 

Diagnostic traits: footprints are longer than they are wide, digitigrade and mesaxonic. 
Footprint length/footprint width ratio is about 1.6. Digit III has a slight curvature in 
relation to the footprint’s axis. Digits II and IV short in comparison to digit III, 
however digit II is always longer than IV. Apparently digits II and IV present a 
small curvature internal to the footprint. In most footprints the claw of digit III 
is very evident and curved. In small forms the three digits present evident claws. 
Hypex is “V” shaped. There is a widening of the proximal portion of digit III, 
however with a pronounced thinning at the extremities, where the claws are inserted. 
Interdigital angles around 20 and 30°. It presents total divergence within digits of 
40–50° (Leonardi et al. 2024; Fig.  4.3).
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e 

Fig. 4.3 Theropoda, Morphotype I, Farlowichnus rapidus, characterized by waterdrop-shaped 
footprints. a trackway with seven footprints; b four footprints of an individual ontogenetically 
younger than the one in Figure a; c detail of the fourth footprint of the trackway in Figure b, with 
two smaller outer digits II and IV, and the longest and larger digit III; d detail in photogrammetry 
technique, of the same footprint of the Figure c; e interpretative drawing of the footprints in Figure 
b. Scale bars: a: 20 cm,  b: 10 cm,  c–e: 2 cm  

According to Thulborn (1998), the footprints of small theropods of the Triassic of 
Gondwana were attributed to the ichnogenus Grallator. Thulborn (1990) suggested, 
as a general rule, that theropod footprints with length smaller than 25 cm were 
attributed to coelurosaurs, and those with sizes greater than this were to carnosaurs. 
However, the morphometric traits of these two categories (Theropoda–morphotype 
I and morphotype II, variation I and variation II), are too discrepant, for that reason 
they are still grouped as morphotypes. This is not about Triassic footprints; but still, 
in front of these observations, none of the samples of Morphotype I of Theropoda
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corresponds to the morphological aspects of Grallatoridae, since digit II is always 
longer than digit IV and the II-IV interdigital angles are in the order of 25°, in 
addition to these digits present slightly convergent terminal portions. This allowed 
Leonardi et al. (2024) to insert this Morphotype I of Botucatu Theropoda into a new 
ichnogenus and ichnospecies, typical of the Botucatu Formation. 

There is a possibility that digit II had a much larger claw (such as in the case of 
dromaeosaurids, cf. Ostrom 1990) that, in the moment of the step, sank much deeper 
in the sand, for instance in the case of the trackway in Fig. 4.3b, c. In all of the 
observed occurrences, the tapered groove in the sand caused by digit II was larger 
than that of digit IV. 

For Morphotype I of Theropoda, by the similarities of morphometric patterns, 
differing only in footprint size, there can be suggested a possible ontogenical series, 
that is, different stages of development (Fig. 4.3a, b), within the same taxon. There-
fore, forms considered juvenile and adults for Farlowichnus rapidus coexisted in 
this paleoenvironmental context. The theropod footprints referring to Morphotype I 
was named Farlowichnus rapidus by Leonardi et al. (2024). The producers of such 
footprints and trackways would have been small dinosaurs adapted to life in the 
desert, ancestors to noasaurs and velocisaurs which, according to the footstep angle, 
progressed rapidly through the dunes of Botucatu’s paleodesert. 

4.3.2 Theropods: Morphotype II 

Diagnostic traits: tridactyl footprints slightly longer than they are wide, digitigrade 
and mesaxonic. Footprint length/footprint width ratio is around 1.1. Digit III is prac-
tically straight and on the same axis as the footprint. Digits II and IV short in compar-
ison to digit III, on most of the footprints the claw of digit III is evident. The hypex is 
“V” shaped. There is widening of the proximal portion of digit III, making it wider 
than the other digits. Interdigital angles are between 30 and 40°. This track presents 
total divergence within digits II and IV of 50 to 70° (Figs. 4.4 and 4.5). It is possible 
to distinguish two variations.

4.3.2.1 Theropods: Morphotype II–Variation I 

Diagnostic traits: tridactyl footprints slightly longer than they are wide, digitigrade 
and mesaxonic. The footprint length/footprint width ratio is around 1.0. Digit III has 
a larger curvature in relation to the footprint’s axis. Digit II also presents curvature 
towards the same direction as digit III. Digits II and IV are shorter in comparison to 
digit III. On most of the footprints, the claw of digit III is more evident than on the 
others digits. Hypexes are “V” shaped. There is a widening of the proximal portion 
of digit III, with a pronounced tapering at the extremities where claws are inserted. 
Interdigital angles between 35 and 50°. The total divergence between digits II and 
IV is around 60 to 80° (Fig. 4.6).
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Fig. 4.4 Theropoda, Morphotype II. a isolated footprint, with elevated interdigital angles, when 
compared to Morphotype I of Theropoda; b isolated footprint; c, d interpretative drawings of the 
footprints; c footprint from Figure a; d footprint from Figure b. Scale bars: 5 cm

4.3.2.2 Theropods: Morphotype II–Variation II 

Diagnostic traits: tridactyl footprints generally longer than they are wide, digitigrade 
and mesaxonic. Footprint length/footprint width ratio is around 1.2. Digit III has a 
larger curvature in relation to the footprint’s axis. Digit II also presents curvature 
towards the same direction as digit III, in this case, digit IV also presents slight 
curvature towards the same direction. Digits II and IV are shorter in comparison 
to digit III, however digit II is larger than digit IV. On most footprints, the claw of 
digit III is more evident than on the other digits. Hypex is “V” shaped. There is 
a widening of the proximal portion of digit III, with a pronounced tapering at the
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Fig. 4.5 Theropoda, Morphotype II, from the territory around Nioaque, Mato Grosso do Sul, 
western flank of the Paraná basin (Manes et al. 2021). a isolated footprint from locality MSNI01; 
b interpretative drawing of the footprint. Facies associated to fluvial systems, corresponding to 
sinuous and asymmetric current ripples and current climbing ripples structures, from the oldest part 
of the Botucatu Formation, locality MSNI26 near Nioaque, Mato Grosso do Sul State. Scale bars: 
a, b: 5 cm. Courtesy: Maria Izabel Lima de Manes

extremities where claws are inserted. Interdigital angles between 30 and 40°. The 
total divergence between digits II and IV is around 50 and 70° (Fig. 4.7).

Since Morphotype II of Theropoda doesn’t have trackways, only isolated foot-
prints, and considering that this group was not adapted to the same kind of envi-
ronment as Farlowichnus rapidus, a similar interpretation was applied for the 
identification of left and right autopodia, with digit II in relation to digit IV.
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Fig. 4.6 Theropoda, Morphotype II–Variation I. a, c isolated footprints, with curved digits. b, d 
interpretative drawings of the footprints, with the position of the digits; b footprint from Figure a, 
showing the greater curvature of digit; d footprint from Figure c, showing the greater curvature of 
digits. Scale bars: 5 cm

As stated by Carvalho and Kattah (1998), the triangular shape of the posterior half 
of the footprint (backfoot triangle) and the symmetrical mirroring of the digits can 
be associated with dinosaurs of small dimensions, as is in the case of Morphotype 
II’s footprints and variations I and II of Theropoda. In F. rapidus, the angles between 
digits II and III are 10 to 15% larger than that between digits III and IV. Within 
Morphotype II there doesn’t seem to be any interdigital dominance, that is, larger 
angles between digits II and III, as seen in F. rapidus. 

The footprints of Morphotype II–variation I may only be variations of Morphotype 
II itself, however they were placed in a separate group due to accentuated curvature 
of digit II and bigger footprint width, compared to Morphotype II–variation II. Inter-
digital angles on Morphotype II–variation I–are elevated, being larger or equal to 
the digits of Morphotype II’s footprints. The Theropoda digits of Morphotype II– 
variation I seem to have a preferential curvature inwards in relation to the trackway, 
considering digit II, longer than IV and also curved.
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Fig. 4.7 Theropoda, Morphotype II–Variation II. a isolated footprint, with slightly curved digits; 
b interpretative drawing of footprint from Figure a, showing the curvature of digits; c another 
isolated footprint, with slightly curved digits; d interpretative drawing of footprint from Figure c, 
showing the small curvature of digits. Scale bars: a, b: 5 cm,  c, d: 2.5  cm

4.3.3 Ornithopods: Morphotype I 

Diagnostic traits: tridactyl footprints, generally as long as they are wide, larger than 
30 cm in length. Footprint length/footprint width ratio is around 0.9. All are digiti-
grade and mesaxonic. Digits are short, in the shape of a hoof. Digit III is practically 
straight. Digits II and IV are shorter when compared to digit III. There are no claws at 
the digits’ extremities, which are rounded, hoof-like. Hypex is “U” shaped. Presents 
the pattern of footprints attributable to the clade of ornithopods. Interdigital angles 
between 20 and 30°. Presents total divergence between digits II and IV around 60–80° 
(Fig. 4.8a, d, e).
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Fig. 4.8 Ornithopoda, Morphotype I. a isolated in situ footprint, showing crenulations (microtec-
tonics with small faults) in front of the impression of three digits; b São Bento Quarry–the orange 
arrow indicates the location of the layer bearing the trackway with the footprint of figure a; c the 
same trackway with five footprints collected at São Bento Quarry and housed in the Science Museum 
of São Carlos; d isolated footprint with three “short” digits and crescent-shaped deformations in the 
posterior portion; e interpretative drawing for footprint in Figure d, showing crenulations in front, 
and deformations in the posterior part. Scale bars: 10 cm



108 M. A. Fernandes et al.

4.3.4 Ornithopods: Morphotype II 

Diagnostic traits: tridactyl footprints, generally slightly longer than wide. Footprint 
length/footprint width ratio is around 1.1. All footprints are digitigrade and mesax-
onic. Digit III is practically straight, much larger than the others. Digits II and IV 
are shorter when compared to digit III. There are no claws at the digits’ extremities, 
which are rounded and hoof-shaped. Hypex is “U” shaped. The footprints present 
a pattern attributable to the clade of ornithopods. The interdigital angles between 
digits II-III and III-IV are 30 and 45°. The total divergence between digits II and IV 
is around 50–80° (Figs. 4.9c, d and 4.10).

For the dinosaur whose digits present rounded extremities and hypexes, therefore 
without the presence of claws, such as the ornithopods, two morphotypes have been 
identified being very similar among themselves, except for the much larger size 
of digit III in some cases (Morphotype II) and very short digits for Morphotype I. 
Footprint length/footprint width was also considered as a diagnostic trait, whereas in 
morphotype I the footprints are wider or partially wider than they are long, especially 
in the larger forms (Fig. 4.8a, c and d). In this category are the largest specimens 
found till this day in the Botucatu Formation and one of the largest of Southeastern 
Brazil, with footprints up to 35 cm in length, a “giant” ornithopod of Botucatu’s 
paleodesert, estimated to be around 5 m in length. Thus, the proposal by Leonardi 
(1989) about a dwarf desert fauna is not corroborated in this case. 

Due to the excessive weight on a sandy substrate, the trackmaker of these Morpho-
type I Ornithopod footprints provoked a deformation of the lower layers of sediment, 
transmitting a subsurface impression thus generating an undertrack with many crenu-
lations. However, this isn’t the case of a true undertrack, but a contact of the foot 
with the subsurface, where there was sinking through the layer of dry sand. The real 
length of the largest footprint’s axis might have changed when lifting the foot to take 
a step. This type of formation for footprints happens when there is dislodging on an 
apparently dry foreset, however when the foot sinks into subsurface there is contact 
and real deformation of lower substrate, marking and crenulations the sand around it. 
Sometimes, this crenulation corresponds to a true micro-tectonic, with small faults, 
all around the footprint, often like a flower system of micro-faults. 

Among the occurrences of this kind of ornithopod footprints, only one trackway, 
with five footprints, was found, specifically of Morphotype I (Fig. 4.8c). At the 
quarry’s workstation, the slabs would break apart during extraction or were split by 
the workers into smaller slabs (Fig. 4.8b) and then reassembled in the laboratory and 
gallery (Fig. 4.8c). 

As for Morphotype II of Ornithopoda, there were found predominantly isolated 
footprints. In a singular occasion, there were registered three pairs of footprints 
of three distinct animals which ran or leaped in the same direction, side to side 
(Fig. 4.9a), obtained in situ. One pair was collected (Fig. 4.9b) and it was found that 
a thin layer of sand covered those footprints simultaneously, which leads to interpret 
the animals walked through the locality almost at the same time. The preferential
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Fig. 4.9 Ornithopoda, Morphotype II. a footprints in sets of two, three partial trackways in situ, 
corresponding to three distinct animals walking side by side, indicative of gregarious behavior 
(details for the orange arrows), at São Bento Quarry, in Araraquara; b two footprints collected 
from that set; c an isolated footprint showing the three digits with rounded terminal portions; 
d interpretative drawing of the footprint in Figure c, with the three rounded digits. Scale bars: a: 
50 cm, b: 20 cm,  c, d: 5 cm
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Fig. 4.10 Ornithopoda, Morphotype II, from the territory around Nioaque, Mato Grosso do Sul, 
loc. MSNI01-2a (Manes et al. 2021). a photograph of a dinosaur footprint obtained in the field. 
b 3D false color depth detail in photogrammetry technique, of the same footprint. Scale bars: 5 cm. 
Courtesy: Maria Izabel Lima de Manes

orientation of the dinosaur trackways may be used as a favorable argument towards 
gregarious habits, corroborating Carvalho (1995). 

4.3.5 Undetermined Footprint, Possibly from a Dinosaur 

Diagnostic traits: tridactyl footprint, wider than it is long. Footprint length/footprint 
ratio is around 0.89. It is a digitigrade and mesaxonic footprint. The three digits are 
comparatively thinner and practically of the same size, except for digit III which is 
slightly bigger than the other digits. Digit III is practically straight and on the same 
axis as the footprint. Digits II and IV don’t present any internal or external rotation 
in relation to the footprint. There are no claws at the digit’s extremities, and they 
are rounded. Hypex is “U” shaped. Interdigital angles are larger than 50°, a fact that 
makes it harder any comparison with the morphotypes identified thus far. The total 
divergence between digits II and IV is higher than 100° (Fig. 4.11).

This unique and isolated footprint presents a longer digit III and it is not possible 
to establish which digits correspond to digits II and IV. The length corresponding to 
digit III is 11.1 cm and width is 12.5 cm. The other digits have a length of 8.7 and 
8.9 cm. Interdigital angles are 52 and 55° and total divergence between digits II and IV 
is 107°. Footprint length/footprint width ratio is 0.88. There is no hallux impression. 
According to Currie (1981), who described trackways of Canada’s British Columbia 
birds of the Lower Cretaceous, the divergence between digits II and IV in all forms of 
small-sized theropods never surpass 100°. In comparison, total divergence of modern 
birds does surpass 100°; their footprint length/footprint width ratio is around 0.84. 
The footprint in question may represent the impression of a bird autopodium, since 
the diagnostic traits corroborate the description by Currie (1981).
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Fig. 4.11 Undetermined footprint, possibly from a dinosaur; a footprint with a longer digit III; 
b interpretative drawing of the footprint, with three slender digits and relatively elevated interdigital 
angles. Scale bars: 10 cm

Preservation of biogenic structures in aeolian sandstones is related to the condition 
of cohesion of sandy sediments when the organism’s activity occurred. In relative 
humidity conditions and rapid burial, there is a larger probability of animal footprints 
to be preserved (Ahlbrandt et al. 1978). As stated by Winker et al. (1991), in a desert, 
these environmental conditions are more probable to happen within leeward and 
interdune areas. According to Leonardi (1980), there are two possibilities to explain 
the preservation of the footprints found in Botucatu Formation’s sandstones. One of 
them would be the cloudless humidity (dew) of nighttime being responsible for the 
preservation of morphological details of footprints. The other possibility, arising of 
comparison with modern analogous environments, would be the existence of subsur-
face humidity from water table under the dune, which would enable the preservation 
of footprints on leeward layers (foresets). Due to the humidity at the interdune regions 
(Winkler et al. 1991), there is a possibility of the existence of ephemeral ponds with 
a temporary biota, a fact which would explain the large occurrence of footprints 
preferentially directed along the paleodune’s foreset. 

When a heavy animal steps on very dry sand, there cannot be seen any morpho-
structural traits preserved on the surface, but only more rounded forms, with a half-
moon on the area of most effort, with no evidence of digits. Preservation becomes 
more evident in the subsurface, with probable digit impressions because of the pres-
ence of humidity. The crenulations, which are a reflection of the autopodia impact on 
the substrate, are much more evident in medium to large-sized animals. The weight 
would provide a larger load on the substrate and therefore break the “surface tension”
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of unconsolidated layers of sand, with partially cohesive grains due to subsurface 
moisture. 

Undertracks occur in distinct preservational degrees. In virtue of the animal’s 
weight and substrate consistency facing the humidity conditions, evidences of under-
tracks are: partial or complete absence of crenulations, shallow proportional depth in 
relation to the footprints size, half-moons of locomotion effort are not very evident, 
and rounded shapes without footprint morphological details. Subsurface impressions 
and undertracks prove more significant on the topic of preservation of autopodial 
impression morphology, in relation to actual footprints. This fact suggests a more 
humid state on a layer of sand under the surface which eventually would be dry. This 
can be corroborated by observing associated arthropod tracks, whose weight would 
not be sufficient to break the tension of moist sand, being certainly formed on dry 
sandy surfaces. 

For a lightweight animal or of small size, such as some juvenile forms of Brasilich-
nium elusivum or arthropods, the impressions in dry sand would be sufficient to 
transfer morphological traits of the autopodia and partially preserve digit forms. 
Subsequent contact with humidity by subsurface percolation or by deposition of 
air humidity, would aid on preservation. For a heavier animal, whose feet were rela-
tively smaller (smaller autopodial area), considering locomotion effort, the autopodia 
could “sink” deeper in the sand and reach the moist subsurface, marking the shapes 
of digits. The impressions under the drier layer would become more representative of 
foot morphology, not being characterized directly as an undertrack, but a subsurface 
footprint. When there is movement at the foreset, the more preserved footprints are 
the ones at the lower levels of the dune, next to the humid interdune, lowering on a 
gradient in direction to its top. 

Leonardi (1989), when studying south-American ichnofauna, observed a 
frequency of theropods of up to 87% for desert paleoenvironments in the whole 
continent, suggesting that this group would be better adapted to arid and desert 
regions than other groups of dinosaurs. However, this could be a reflection of condi-
tional preservation of the environment, which favored preserving of footprints, or 
undertracks, with smaller proportions produced by dinosaurs with low body mass 
and also on higher or lower subsurface moisture. 

The footprints found at the paleodesert that corresponds to the Areado Group of the 
Sanfranciscana Basin (Upper Jurassic-Lower Cretaceous) occurred on a moist inter-
dune context, with erosion by wind with smaller and less dense particles (Carvalho 
and Kattah 1998; see also chap. 5, this book). Preservation of these footprints was 
interpreted as a result of fluctuations of the phreatic level during its formation, since 
those preserved in moments of higher humidity present more defined morphology. 
The same interpretation may be inferred for the context of the Botucatu Formation: 
the relatively well-preserved footprints would be associated to higher contact with 
humidity, be it from the influence of a shallow phreatic level, or by the action of 
precipitation of humidity with nighttime humid air. 

In Brazil, there is a modern aeolian environment analogous to the Botucatu pale-
odesert, the Parque Nacional dos Lençóis Maranhenses (PNLM). By observing the 
formation of modern footprints at the PNLM, it was possible to corroborate the
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different preservation states of various animal footprints in relation to higher or 
lower humidity levels. At these dunes, even at the top, moist sediments are found 
at 6 to 8 cm of depth. Unconsolidated and dry surface sand is easily deformable 
because of the extreme plasticity it is encountered in. Animals of small size such as 
arthropods and small lacertoid reptiles hardly ever sink their feet through superfi-
cial sand, not reaching the subsurface. Larger animals on the other hand, which are 
heavier, impress their footprints directly under the drier layer of sand that suffers 
deformation, without preservation of foot morphology on those surface layers. 

In the aeolian environment of PNLM there is partial preservation of organism’s 
footprints in the function of subsurface humidity, which migrates by capillary to the 
upper portions of the dunes during the night. During daytime, the sun’s heat “dries” 
the surface sand on a deepness gradient. At the surfaces near the interdunes, the sand 
depth is around 3 cm, and deeper there is moist sand. 

The dunes of Badain Jaran, the second largest desert of inner Mongolia, contain 
giant subterraneous water reservoirs that could supply the chronic lack of water in 
northern China. In this desert, there are signs of humidity around 20 cm under the 
dry surface sand. This fact explains why the most elevated dunes in the world, of up 
to 500 m in height, resist aeolian erosion. This subterraneous water acts as a binding 
agent, giving dunes resistance against erosion and sand slides (Chen et al. 2004). 

Just like in modern analogous environments, the thickness of the dry sand layer 
in the Botucatu desert may have been variable, in function of the temperature during 
the day, migration of interstitial water, intensity of winds, and season of the year. 

4.4 Paleogeographical Distribution of the Footprints 

The Botucatu sandstone covers most of the Paraná Basin, Eastern Paraguay, northern 
Uruguay and Northeastern Argentina, consisting of an area of more than 1,300,000 
km2, constituting what was one of the largest continuous arid deposits in the ancient 
world. In the paleontological context of the Botucatu Formation, aside from ichnofos-
sils, there were minor body fossils of conchostracans and some silicified Conyphero-
phyta logs at the northwestern part of the Formation, in the Triângulo Mineiro, in 
Uberlândia county (Almeida and Melo 1981). 

According to Leonardi (1980) and Leonardi and Oliveira (1990), the ichnofauna 
attributed to the Botucatu Formation is endemic. This fact causes problems for the 
classification and interpretation of tracks but adds a lot to its interest. Ichnofossils of 
predominant tetrapods are attributed to primitive mammals, especially Brasilichnium 
elusivum, accompanied by bipedal dinosaur tracks (Ornithopoda and Theropoda). 

At the northern portion of the Paraná Basin, where currently are located the states 
of São Paulo and Paraná, there should exist an increase in humidity due to the 
elevation of the groundwater table in deposits of sediments preceding the Botucatu 
Formation. In the southern portion of Paraná Basin, where the state of Rio Grande 
do Sul is located, the topographical changes during the Early Cretaceous would have 
produced environmental conditions unfavorable for preservation and fossilization at
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the paleodesert. This area would be hotter and drier, in contrast, for example, with 
the region where today the São Bento quarry’s outcrop is situated. This fact would 
justify the largest occurrence of footprints more to the north of the basin. 

A very different situation, from a paleoclimatic and paleoenvironmental perspec-
tive, has been discovered and studied in the western flank of the Paraná Basin, in 
the Mato Grosso do Sul State, in the region around the town of Nioaque. It also 
represents the deepest and oldest portion of the Botucatu Formation, but also has 
remarkable footprints of bipedal dinosaurs (Manes et al. 2021) (Figs. 4.5a, b; 4.10a, 
b), undoubtedly older and with different environmental specialization, compared to 
those of the eastern flank of the crown of outcrops of the Botucatu Formation. 

The period of volcanism, known as the Paraná-Etendeka event, seems to have been 
preceded by global warming, as shown by Price et al. (2018), with their analysis by 
means of isotopes. This study would explain the gradual increase in aridity, causing 
the transition from fluvial (like in the Mato Grosso do Sul situation, discovered by 
Martins 1990 and Manes et al. 2021; Fig.  4.5c) to aeolian deposits or great dune-field, 
which were considered the normal environmental setting for the Botucatu Formation 
(Fig. 4.12). This fact suggests a climate change event between the Late Jurassic and 
the Early Cretaceous, changing conditions from semi-arid to hyper-arid and warmer 
climate.

4.5 Paleoenvironmental and Paleoclimatic Contexts 

The Botucatu Formation (with the significant exception for the Mato Grosso do Sul 
State) represents an extensive dune field, with many sub environments of a large 
climactic desert, of growing aridness beginning during the Jurassic Period, over the 
old Gondwanic continent. This paleodesert was buried during the Early Cretaceous 
by the most voluminous episode of basaltic intracontinental volcanism of the planet, 
registered by the Serra Geral Formation. 

During transportation and deposition of the Botucatu sediments, the grains 
suffered strong aeolian abrasive action and the minerals of low hardness were elim-
inated, with only the more resistant minerals remaining (Caetano-Chang and Wu 
1992). The climate was an important controller of aeolian sedimentation due to the 
paleogeographic conditions of Gondwana (Scherer et al. 2002). The presence of the 
pre-Andean mountain range must have impeded that the winds from the west (west-
erlies) dislocated humidity to the inner part of the continent, producing an ample 
strip of aridness and generating aeolian dune fields that covered a great part of the 
South-American Platform. In addition to this, at the edge of the chain of mountains, 
an ample system of alluvial fans was developed, which served as a source area for 
the Botucatu Formation’s aeolian sands (Milani 1997). The winds that moved the 
dunes of the Botucatu paleodesert in the State of São Paulo blew primordially from 
N to NNE (Bigarella and Salamuni 1961; Leonardi 1980). 

The silicification process of the Botucatu Formation’s aeolian dunes occurred 
due to the temperature elevation of subterraneous water, associated with volcanic
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Fig. 4.12 
Paleoenvironmental 
reconstruction of the 
Botucatu Paleodesert in the 
Araraquara region. 
Theropods and ornithopods 
gather around a freshwater 
point in interdune 
environment. Nearby, some 
diverse theropods are 
roaming, interested in water, 
but also in some prey.  In  the  
foreground, the trackmaker 
of Farlowichnus rapidus. Art  
by Guilherme Gehr

elements (ionically charged solutions). The hydrothermal solution migrated to the 
surface by capillarity contributing to the cementing of the sand grains, making the 
preservation of paleodunes possible and therefore, of the fossil footprints in the 
deposited sand layers. The devitrification of glassy clasts was enhanced by the heat 
flow and hydrothermal activity of magmatic and volcanic rocks, particularly intruded 
sills and dikes, releasing silica and precipitating low temperature authigenic mineral 
assemblages. Chalcedony plays an important role in this cementing of the inter-
trap sandstones, retaining the initial open structure of the sediment while filling the 
primary porosity. Massive precipitation of early diagenetic-hydrothermal minerals 
was the most common way for filling pores; these minerals included smectite, chal-
cedony, zeolite, mega-quartz, and hematite, resulting in a partial obliteration of the 
primary porosity and permeability (Nogueira et al. 2021). This process contributed 
to making the slabs of sandstone a hard material for paving and building.
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Aside from the ichnological occurrences, there are numerous natural non-biogenic 
facies found in the Botucatu Formation’s sandstones, which contributed to the pale-
oenvironmental interpretations. Many aeolian ripple-marks were found on the sand-
stones, both in forest as in topset, and indicate the direction and predominance of the 
paleowinds of NE to SW directions. However, the direction of the local main pale-
owind for the São Bento Quarry, taken with the analysis by Leonardi (1980), of 58 
successive foresets, would be from N4°E to S4°W. The adhesion ripples, indicative 
of high moisture levels, would form on the foreset and are frequently found on the 
Botucatu Formation’s sandstones. The presence of mud cracks in association with 
adhesion ripples reinforces the prerogative of a moist interdune as stated by Leonardi 
(1980). 

Rare imprints from raindrops were preserved in the paleodesert’s sands, as small 
impact craters, and corroborate the hypothesis that the occasional humidity would 
occur in determined times of the year. After the rain, the wind would cover the 
moisturized dunes with dry sand, creating surfaces with preserved raindrop marks 
associated with ripple marks. This water could supply subterranean reservoirs before 
the surface’s total evaporation, as it does currently at the Parque Nacional dos Lençóis 
Maranhenses (Maranhão State, Brazil). 

At the aeolian sandstones of the São Bento quarry are found very frequently 
ferromanganesian concretions, which formed inside the sedimentary layers in post-
depositional events, but before complete lithification. With the interference of perco-
lating humidity, oxidation of those particles created a radial dispersion of the oxides, 
staining the sand around the grain, and making concretions. These are the so-called 
dendrites or “flowers” of MnO2, or nests of MnO2 granules. 

In some of the sandstone’s strata observed at the São Bento quarry, there are 
differences in the thickness of the layers. The sandstone layers can have a millimetric 
thickness that can go up to 20 cm at certain points. A larger number of laminations by 
layers can be related to the increase in humidity during deposition. The cross strata 
that occur in the unconsolidated sands of a recent analogous environment, such as 
those in Lençóis Maranhenses, are extremely similar to those found in the Botucatu 
Formation. Field observations indicate that the conservation of these sedimentary 
strata only exists due to humidity. Tonality and thickness differences reflect both 
the mineral composition, intensity of winds, and humidity levels. The stratification 
amidst the white sands of the Lençóis Maranhenses is evident from the particulate 
material containing clay, associated with organic matter particles transported by the 
wind, under oxidative and humidity actions. A very similar fact probably occurred 
during the deposition of the Botucatu Formation, whose strata also vary in tonality 
and thickness. In this case, the reddish color is due to ferromanganese particulates 
coming from the Serra Geral’s fissural volcanism, transported by the wind, and 
constantly deposited over the paleodesert’s sand. Thus, one should not think that the 
sands and dunes of the paleodesert Botucatu should be reddish, like the rocks of 
the corresponding present rock formation. Their original color had to be rather from 
gray to yellowish. 

New environments in which it will be appropriate to search and possibly discover 
fossil footprints of tetrapods are, firstly, the intertraps sediments, in which it appears
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that they have not yet been found, but they can undoubtedly be discovered. Secondly, 
in the volcano-sedimentary features overlying and underlying the flows, formed by 
the interaction of consolidated or unconsolidated tuffaceous sediments, saturated or 
not in the water (Rios et al. 2023). 

An important element that concerns the paleoclimate, is that of the presence or 
absence of water in the present and fossil dunes, whether it is rainwater, whether 
on the rise by means of porosity or other, of the water table. In fact, the processes 
and products from interactions sand/water are still not fully understood (Rios et al. 
2023). In particular, one should study the morphological quality of the footprints, 
current and fossil, in the presence or absence of water. Especially, it would be very 
important to study, in the case of footprints imprinted on dunes normally arid, and 
therefore in dunes not coastal but located in the hinterland, the difference of the 
characteristic “crescents”, which accompany the footprints, current or fossil, in dry 
dunes. In the fossil footprints of the Botucatu Formation, the object of this chapter, 
the displacement rims (DR) with its typical crescent form are sometimes narrow and 
high, and one gets the impression that the sand was wet; other times they present 
themselves as true sand-slides, sometimes even double or repeated several times 
(Figs. 4.6a–d and 4.9b–d). The DRs are in any case always produced in the direction 
of the dip of the foreset or topset of the dune. 

And finally, the magmatic and volcanic events of the Serra Geral Formation were 
also associated with rapid climate changes and mass extinction events. The great 
activity of these magmatic provinces must have influenced markedly the various 
terrestrial and marine environments. Abrupt changes in the concentration of green-
house gases in the atmosphere occurred episodically throughout the history of the 
Earth, and it seems that much of the climate changes and environmental ruptures 
were related to the Large Igneous Provinces (Carvalho 2022). 

4.6 Conclusions 

The tetrapod ichnofauna represented by tracks in the Botucatu paleodesert is predom-
inantly endemic, which make it harder comparison with other Mesozoic occur-
rences. In the Botucatu paleodesert small to mid-sized mammals, lizard-like reptiles, 
theropods (insectivores and small-sized carnivores) and ornithopods (small to mid-
sized herbivores), and invertebrates such as beetles and arachnids all coexisted. Those 
occurrences suggest a very diverse paleoecological relationship, with detritivore and 
coprophagic organisms like beetles; scorpions that would feed on those beetles; 
mammals that would eat those beetles and scorpions; herbivore dinosaurs that would 
graze at the margins of small ponds formed in periods of higher humidity, or that 
lived in marginal areas of interdunes, with vegetation, and were crossing through 
the dunes; small sized carnivore dinosaurs that would feed on the small mammals, 
beetles, and scorpions. 

In this environment there were registered at least four different dinosaur groups, 
two Theropoda, with morphological variations, and two Ornithopoda, which lived
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and walked through the dunes, leaving their preserved footprints on foreset areas or 
on moist interdunes, as verified by the minor vestiges of raindrops, adhesion ripples 
and mud-cracks associated to the animal’s footprints. There have never been any 
registered footprints attributed to sauropods for the Botucatu Formation and the fact 
is certainly related to the aridness of the environment with the scarcity of food for 
the referred group of dinosaurs. 

Alterations in speed during locomotion, direction of movement on the foreset and 
preservational conditions, are decisive factors for the formation and preservation of 
tracks with distinct patterns that can be produced by the same animal. Preservation of 
footprint morphology on the dunes at leeway occurs due to the presence of humidity 
that clumps the sand grains because of the water’s surface tension. This water could 
come from the nighttime humid air, dew, or by percolation, in function of evaporation, 
with the migration of interstitial water, especially during the nighttime. During the 
day, with the heating of the surface and action from the wind, successive layers of 
drier sand removed from the dune’s windward and deposited over the track, would 
help protect the morphology of the footprint and would therefore make its definitive 
preservation possible. 
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Chapter 5 
The Dinosaur Footprints 
in the Cretaceous Aeolian Deposits 
of Sanfranciscana Basin 

Ismar de Souza Carvalho and Senira Kattah 

5.1 Introduction 

The Sanfranciscana Basin is one of the Brazilian intracratonic basins, located in 
central-eastern Brazil, oriented in the N–S direction with approximately 1,100 km 
long and 200 km wide (Cabral and Mescolotti 2021), occurring in the states of Minas 
Gerais, Goiás, Bahia, Tocantins, Piauí and Maranhão (Fig. 5.1). It covers 220,000 km2 

of the São Francisco Craton with Paleozoic (Santa Fé Group, Permo-Carboniferous) 
and Mesozoic rocks, ranging from the Late Jurassic to the Late Cretaceous (Campos 
and Dardenne 1997a; Sgarbi et al.  2001) and encompasses the Abaeté (south) and 
Urucuia (north) sub-basins (Campos and Dardenne 1997b). The Cretaceous sedimen-
tary record is constituted by the Areado (Lower Cretaceous), Mata da Corda (Upper 
Cretaceous), and Urucuia (Upper Cretaceous) groups, deposited from Barremian to 
Maastrichtian and is one of the extensive events of Gondwanan continental sedimen-
tation (Carmo et al. 2004; Mescolotti et al. 2019; Nascimento et al. 2022; Sgarbi  
et al. 2001).

The dinosaur footprints from the Sanfranciscana Basin are found in the Lower 
Cretaceous aeolian deposits of the Areado Group that is constituted by the Abaeté, 
Quiricó and Três Barras formations. The Abaeté Formation is composed of matrix-
supported and clast-supported conglomerates, resulted from gravity-controlled 
processes in alluvial fans and wadi in desert conditions (Campos and Dardenne 
1997a; Sgarbi et al.  2001). The Quiricó Formation is composed of mudstone and
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Fig. 5.1 Geographic context of Sanfranciscana Basin in Central-East Brazil. Structural archs and 
subdivision into the Urucuia and Abaeté sub-basins. 2022 Modified from Cardoso and Basilici 
(2022)

heterolithic facies (Mescolotti et al. 2019) interpreted as deposited in lacustrine, 
fluvial and aeolian environments (Campos and Dardenne 1997b). The Três Barras 
Formation is comprised mainly of sandstones, with associated conglomerate and 
fine-grained deposits resulted from fluvial-aeolian processes (Campos and Dard-
enne 1997a; Sgarbi et al.  2001). This unit was divided by Mescolotti et al. (2019) 
in two depositional units. The Lower Unit (Barremian/Aptian) encompasses a wet 
aeolian system composed of dunes, interdunes, and ephemeral alluvial deposits. In 
the upper part of the Lower Unit a continuous paleosol records dune stabilization 
and the end of aeolian accumulation. Follows a stratigraphic gap (Cenomanian to 
Coniacian) that coincides with the Cretaceous Thermal Maximum. The Upper Unit 
(Santonian?/ Campanian) comprises dune fields of a dry aeolian system capped by 
volcanic rocks (Mescolotti et al. 2019).
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The footprints from the Sanfranciscana Basin occur in the aeolian deposits, inter-
preted as interdune deposits, an adequate area to flourish life, especially due the 
moister environment and the availability of water. The footprints are found in the 
Três Barras Formation and they are in the same environmental context of the Botu-
catu Formation and Caiuá Group (Paraná and Bauru basins), where also occur similar 
theropod footprints. 

5.2 Geological Context 

The Lower Cretaceous rock successions registered extremely arid conditions in the 
Gondwana. In the Paraná Basin there are the deposits of the most extensive pale-
odesert of Earth history—the Botucatu Paleodesert, where fossil footprints are found 
in the Botucatu Formation. The Cretaceous deposits of the Sanfranciscana Basin 
(mainly the Areado Group, Fig. 5.2) also record semi-arid to desert settings asso-
ciated to the hot and dry climatic conditions (Grossi Sad et al. 1971; Suguio and 
Barcelos 1983). 

The Três Barras Formation (Areado Group) is dominantly composed of sand-
stones that interfinger and conformably overlie the deposits of Quiricó Formation 
and it is overlain by the Upper Cretaceous volcanic alkaline rocks of Mata da 
Corda Group (~80 Ma, Sgarbi et al. 2004). Ten sedimentary facies were recog-
nized in the Três Barras Formation by Mescolotti et al. (2019), including: Medium-
to coarse-grained trough cross-bedded sandstone; meter-scale trough cross-bedded 
sandstone; planar cross-bedded sandstone; parallel-laminated sandstone; climbing

Fig. 5.2 Stratigraphic chart of the Sanfranciscana Basin (modified from Leite and Carmo 2021) 
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ripple cross-laminated sandstone; sandstone with deformational structures; paleosol; 
massive mudstone; laminated mudstone; and interlaminated fine-grained sandstones 
and mudstones with heterolithic lamination. 

The fossils of the Areado Group are restricted to the Quiricó and Três Barras 
Formation (Carvalho et al. 1994). The mudstones, shales, siltstones and carbonates of 
Quiricó Formation (?Hauterivian-Aptian) are a mixed siliciclastic–evaporitic succes-
sion interpreted as fluvio-lacustrine and playa lake paleoenvironment (Cardoso et al. 
2022, 2023). They contain palynomorphs, leaves of gymnosperms and angiosperms, 
annelids, insects, ostracods, spinicaudatans, elasmobranchs, actinopterygians, coela-
canthiforms and dinosaur bones (Scorza and Santos 1955; Barbosa 1965; Duarte, 
1968; Barbosa et al. 1970; Santos 1971; Lima  1979; Duarte 1985a, b; Santos 1985; 
Carvalho et al. 1994, 1995; Arai et al.  1995; Duarte 1997; Barbosa et al. 1997; Delício 
et al. 1998; Carmo et al. 2004; Gallego and Martins-Neto 2006; Carvalho and Maisey 
2008; Zaher et al. 2011, 2020; Leite et al. 2018; Fragoso et al. 2019; Brito et al. 2020; 
Bittencourt and Brandão 2021; Bittencourt et al. 2015, 2018; Ribeiro et al. 2018; 
Coimbra 2020; Carvalho and Santucci 2021; Leite and Carmo 2021). The shales 
of Quiricó Formation can be organic-rich locally, and temporally record perma-
nent dysoxic/anoxic environments. The succession is characterized by mudstones 
with scattered grains of fine sand and desiccation cracks, evaporites interpreted as 
ephemeral shallow lakes with events of subaerial exposure and rapid modifications 
of the water chemistry (Mescolotti et al. 2019; Cardoso et al. 2022). In the Três 
Barras Formation (Barremian-Albian), silexilite units occur in association with sand-
stones and mudstones. In these silica-rich rocks, radiolarians and other marine fossils 
are present (Kattah 1992; Kattah and Koutsoukos 1992). The Três Barras Forma-
tion (Fig. 5.3) comprises siliciclastic deposits interpreted as fluvial, deltaic, marine 
and aeolian sedimentation. The presence of dinoflagellates, radiolarians, spicules of 
sponges, carapaces of foraminifera and possible acritarchs in silexilite levels were 
interpreted as indicative of marine environments (Kattah 1991; Kattah and Kout-
soukos 1992; Pessagno and Dias-Brito, 1996; Pessagno et al. 1997; Dias-Brito et al. 
1999) such as restricted platform (Kattah 1992), marine transitional marginal (Castro 
1996) and neritic or oceanic environments (Arai 1999; Dias-Brito et al. 1999; Arai  
2009, 2014a, b). Carvalho and Kattah (1998) described eleven dinosaur footprints 
in the Três Barras Formation. They are in deposits of an aeolian facies of a humid 
interdune environment (Kattah 1993; Carvalho and Kattah 1998). Other footprints 
were identified as cross-section structures, concave-upward and asymmetric soft-
sediment deformation structures, interpreted as produced in wet interdune facies, in 
the interdune-dune contact and in dune foresets (Mescolotti et al. 2019).

5.3 Footprints: Diversity and Paleobiological Interpretation 

The fossil footprints are found in two distinct ichnosites: João Pinheiro and Presidente 
Olegário, both in the homonymous municipalities of the Northwest of the state of 
Minas Gerais, microregion Paracatu. There are eleven dinosaur footprints in the João
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Fig. 5.3 Outcrop of the Três Barras Formation where occur the footprints of the João Pinheiro 
ichnosite

Pinheiro ichnosite preserved as epireliefs filled with a fine to coarse-grained reddish 
sandstone similar to the surrounding matrix. Three smaller of them are part of a 
short trackway (Carvalho and Kattah 1988). There are also cross-section footprints 
observed as concave upward deformation structures and narrow shaft straight borders 
from the Presidente Olegário ichnosite (Mescolotti et al. 2019). 

5.3.1 João Pinheiro Ichnosite 

The short track of three consecutive footprints (JPAR 01, JPAR 02 and JPAR 03) 
shows an oblique pace of 60 cm and step angle of 155º. The stride is 112.5 cm long. 
These footprints are tridactyl, mesaxonic and digitigrade with evidence of claws, 
with 15 cm of width and length. The hypexes angles between digits II-III and III-V 
are acute, with an average value of 30º. Footprint JPAR 01 is preserved as convex 
epirelief and footprints JPAR 02 and JPAR 03 as concave epirelief. Two footprints 
from this short track (JPAR 01 and JPAR 02) show a projection on the rear border that 
could correspond to digit I. The digits are tapered and the extremities of footprints 
JPAR 01 and JPAR 03 show claw imprints (Figs. 5.4 and 5.5).
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Fig. 5.4 Footprints from the João Pinheiro ichnosite that are interpreted as tracks of small and 
large-sized theropods and ornithopod trackmakers preserved in the Três Barras Formation, Areado 
Group. JPAR—João Pinheiro County, Areado Group. Footprints in dark color due the use of water 
to highlight them. Scale bar: 5 cm

The isolated footprints are bigger than these last ones. They are also tridactyl, 
mesaxonic and with digit III projecting more than digits II and IV (JPAR 04, JPAR 
05, JPAR 07, JPAR 08, JPAR11) or presenting almost the same size (JPAR 06, JPAR 
09, JPAR 10). 

The footprint JPAR 04 is isolated, tridactyl and mesaxonic preserved in concave 
epirelief without clear morphological details. The footprint shows 25 cm in width 
and 30 cm in length. Digit III is the bigger, very large in its base and pointed in 
the anterior extremity. The two other digits show almost the same size, shorter and 
more pointed, suggesting the presence of claws. The hypexes between digits II-III 
and III-IV are acute (35º).
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Fig. 5.5 Morphological aspects of the dinosaur footprints from the João Pinheiro ichnosite. a Small-
sized theropod footprints in a short trackway (JPAR 01, JPAR 02, JPAR03); b (JPAR 04), c (JPAR 
05) theropod footprints; d (JPAR 06), an isolated ornithopod footprint; e (JPAR 07), a dubious 
trackmaker (ornithopod or large-sized theropod) due the preservation conditions of the footprint; 
f (JPAR 08), g (JPAR 09) and h (JPAR 10) probable theropod footprints; i (JPAR 11), an isolated 
large-sized theropod footprints probably related to Abelisauroidea; Modified from Carvalho and 
Kattah (1998). JPAR – João Pinheiro County, Areado Group. Scale bar: 10 cm

The footprint JPAR 05 is preserved as concave epirelief. It is an isolated footprint, 
tridactyl and mesaxonic with 26 cm in width and 30 cm in length. Digit III is the 
longest in size, slightly curved in the anterior region. Digits II and IV show the same 
size, while digit III is the most pointed. The hypexes are acute, with 30º of angular 
value between digits II-III and III-IV. The rear border of the footprint is well defined 
and rounded.
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JPAR 06 is also an isolated footprint, tridactyl and mesaxonic, preserved as 
concave epirelief, with 38 cm in width and 24 cm in length. The index l/w is here 0.63, 
a rare condition. It is, in fact, a very short and wide footprint, perhaps because of the 
collapse effect. Surrounding the digits and the rear border there is the deformation 
of the sediments with a crenulation aspect. It corresponds to a fluidization process 
related to the load of the trackmaker over the substrate. Digit IV is not preserved. 
Digit II is pointed, showing bigger dimensions than the other two digits. Only the 
lower portion of digit III is partially preserved. The hypex between digits II-III is 
wide and rounded and the III-IV angle is 40º. The rear border of the footprint is a 
wide continuous curve. 

JPAR 07 is an isolated footprint, 20 cm in width and 48 cm in length, preserved as 
concave epirelief, without clear morphological details and contour. Digits II and III 
are partially preserved, with a wide elongation of the posterior margin of the footprint. 
The interdigital angle between digits II-III is 35º and the hypex is parabolic. 

JPAR 08 is an isolated tridactyl and mesaxonic footprint preserved as a convex 
epirelief. There is also as in JPAR 06 the deformation of the sediments, with a 
crenulation aspect, surrounding the digits. It is an evidence of fluidization induced 
by the trackmaker load. The footprint is 25 cm width and 38 cm in length with a 
rounded rear outline. The digits show a larger lower portion and a pointing aspect 
in the distal region. They present almost the same size, although digit III is slightly 
longer (10 cm in length) than the others and shows a small curvature in the distal 
extremity. The angular value is 30º between digits II-III and 50º between digits III–IV. 

JPAR 09 is an isolated tetradactyl and mesaxonic footprint preserved as a convex 
epirelief. It measures 24 cm in width and 24 cm in length. Surrounding the footprint 
there are crenulated deformations, especially on the borders of digit IV. The three 
digits present almost the same length (12 cm) with a larger lower portion. The distal 
ends are more pointed. The hypexes are wide, with 50º between digits II-III and 40º 
between digits III-IV. The rear margin presents a short spur, probably corresponding 
to digit I. 

The footprint JPAR 10 is isolated, tridactyl and mesaxonic, 15 cm in width and in 
length, preserved as concave epirelief. The posterior margin is rounded and shows 
a continuous curve between digits II and IV. The digits are pointed, almost with the 
same length (7 cm), and a probable claw impression in digit III. The hypexes are 
acute, and the angle value between digits II-III and III-IV is 40º. 

JPAR 11 is an isolated, tridactyl and mesaxonic footprint preserved as concave 
epirelief. The footprint measures 22 cm in width and 22 cm in length. Although the 
three digits are pointed they show rounded extremities, without the presence of claw 
marks. The hypices between II-III and III-IV are acutes and they show the same 
angle value (45º). The rear margin of the footprint is narrow and slightly pointed. 

The trackmaker interpretation of the footprints from the João Pinheiro ichnosite 
is difficult. There is only one theropod based on osteological data described to the 
Sanfranciscana Basin, the Abelisauroidea Spectrovenator ragei (Zaher et al. 2020) 
from the Quiricó Formation. Other dinosaur remains (bone fragments and teeth) were 
preliminarily attributed to Abelisauridae, Dromaeosauridae (Carvalho et al. 2012; 
Santucci et al. 2014), Abelisauroidea (Bittencourt and Langer 2011; Zaher et al.
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2011; Pires-Domingues 2009) and Noasauridade (Silva 2013). The short track with 
three small fooprints is classified as a small biped dinosaur. In these footprints it is 
possible to observe claws in the digits II, III and IV (JPAR 01, JPAR 02 and JPAR 03) 
and a digit I (hallux) in the rear border. The general morphology allows attributing 
these footprints to a small-sized theropod. Carvalho and Kattah (1998) suggested 
to this track an origin “coelurosauriform” (term that had another meaning, at that 
time), and the Aptian small theropods from the Araripe Basin, similar to Mirischia 
asymmetrica Naish et al. (2004), probably a coelurosaurid or Santanaraptor placidus 
Kellner (1999), classified as coelurosaurid or as a noasaurids (Naish et al. 2004; 
Kellner 1999), could be good examples of trackmakers. 

The footprints from the Três Barras Formation present similarities with some 
footprints found in the Botucatu Formation, Paraná Basin (Leonardi and Godoy 
1980; Leonardi and Lima 1990). There are also features in common with footprints 
from China (Zhen et al. 1991) that show a wide posterior margin (Zhengichnus 
jinningensis Zhen et al. 1986 and Xiangxipus chenxiensis Zeng 1982), in addition to 
those that present a well-defined metatarsal region, similarly to the Sanfranciscana 
Basin footprints JPAR 06 and JPAR 07. The tracks are generally of small, curso-
rial theropod, related to Gondwanan clades such as noasaurids or velocisaurids. 
Leonardi (1977) and Langer et al. (2019) interpreted the recurrence of a similar 
desert-dwelling fauna based on similar tracks from the Botucatu Formation that are 
also found in the Caiuá Group. These authors also observed that the functionally 
monodactyl theropod footprints from the Botucatu Formation, Caiuá Group (Paraná 
Basin) and La Matilde Formation (Argentina; Casamiquela 1964) are consistent with 
the foot morphology of the noasaurid Vespersaurus paranaensis. Noasauridae is a 
clade of theropod dinosaurs nested within Abelisauroidea mainly known by rather 
incomplete records from the Cretaceous of Gondwana. They are small to medium-
sized dinosaurs with necks, arms, and skulls relatively longer than those of other 
abelisauroid clades (Carrano et al. 2011; Barbosa et al. 2023) and a species such as 
Vespersaurus paranaensis was not a top predator, having a possibly generalist diet 
and an opportunistic feeding strategy (Barbosa et al. 2023). 

The footprints JPAR 10 and JPAR 11, that show an acute rear border and bigger 
dimensions than the short track (JPAR 01, JPAR 02 and JPAR 03), are related to 
large-sized theropod dinosaurs such as the Abelisauroidea. The same classification 
is assigned to the footprints JPAR 04, JPAR 05, JPAR 08 and JPAR 09, with pointed 
digits and digit III (JPAR 04, JPAR 05, JPAR 08) longer than the others. In the 
Sanfranciscana Basin the unique possible comparison could be with Spectrovenator 
ragei (Zaher et al. 2020). Although it is an Abelisauridae from the Quiricó Formation 
(Aptian) it is correlative in time to these footprints from the Três Barras Formation. 
There are few postcranial remains of Spectrovenator to estimate its length: an astra-
galus is fused to the calcaneum; astragalar ascending process is tall and laminar 
and lacks the fusion with the fíbula; the metatarsus is gracile, lacking the reduced 
width of metatarsal II present in noasaurids; the pedal unguals have proximally bifur-
cated grooves (Y-shaped) and a flexor tubercle with an associated ventral depression 
(Zaher et al. 2020). It is a medium-sized Abelisauridae (2.5 m in length), which
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general dimensions fit in the larger isolated footprints proportions (20–28 cm in 
width and 23–48 cm in length) of the Três Barras Formation. 

The footprint JPAR 06 is the one with the most distinct morphological pattern 
among the Sanfranciscana Basin footprints. The rear border and the obtuse angled 
hypex between digits II-III suggest an autopodium with a digital membrane as identi-
fied by Reynolds (1991) and Zhen et al. (1991). Therefore Reynolds (1991) suggested 
that the large width of the footprint could be related to a locomotor response to the 
sand surface where the trackmaker walked, and not necessarily related to the pres-
ence of a digital membrane between digits. The absence of sharp claws indicates 
that the footprints can be assigned to the ornithopods described and illustrated by 
Leonardi (1994). 

Concerning footprint JPAR 07, the stretching of the rear border could represent 
very distinct groups. The impression of a metatarsal, which is common in Lower 
Jurassic ornithopods (Thulborn 1990; Ellenberger 1970) such as Anomoepus scambus 
and Moyenisauropus natator, is also present in Triassic and Cretaceous theropods 
(Lockley and Gillette 1991). Kuban (1991) considered that the metatarsal impression 
in biped dinosaurs could be a behavioral response to the unstable condition of the 
substrate or a posture change of the trackmaker during the walk. 

5.3.2 Presidente Olegário Ichnosite 

The footprints from the Presidente Olegário ichnosite are preserved as cross-section 
structures concave-upward, symmetric and asymmetric deformation structures, and 
a narrow shaft structure in the facies meter-scale trough cross-bedded sandstone (St2) 
proposed by Mescolotti et al. (2019). The concave-upward footprints range 55–60 cm 
in width and 20 cm in penetration depth, despite the depth of the bedding deformation 
reach 75 cm. The narrow shaft shows straight borders, without the bending of the 
surrounding sandstone beds. It is slightly curved and pointed in the lower border. 
It has 36 cm in width and 80 cm in depth. The load of the trackmakers induced a 
successive deformation in the lower levels of reddish sandstones, fine- to medium 
grained. In the case of the large concave-upward footprints there isn’t the rupture of 
the lower strata. Instead, the narrow shaft shows a clear rupture of the substrate lamina 
succession with the association of microfaults. The environment where these tracks 
were preserved was interpreted as the migration of large sinuous-crested aeolian 
dunes, sometimes with sand liquefaction at the base of foresets due to gravitational 
instability, in a context of wet interdune facies (Mescolotti et al. 2019) (Fig. 5.6).

There are also concave-upward symmetric and asymmetric cross-section tracks 
in the interdune-dune contact. They range from 25–45 cm in width and 32–37 cm 
penetration depth, despite the depth of the bedding deformation reaches 65 cm. They 
are found in fine- to medium-grained parallel laminated sandstones with two-fold 
grain size segregation, arranged in 0.5- to 2-m-thick horizontal to low angle (less than 
5°) strata (SI facies, Mescolotti et al. 2019). The paleoenvironment is interpreted as
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Fig. 5.6 Cross-section footprints from the wet aeolian system of Três Barras Formation, Presi-
dente Olegário ichnosite. a, b Concave upward deformation structures with bedding deformation 
interpreted as a sauropod footprint in the wet interdune facies; c Narrow shaft structures, with a 
pointed lower extremity, this last being interpreted as the impression of a theropod digit III in the 
dune foresets. Facies St2—meter-scale trough cross-bedded sandstone. Photographs courtesy by 
Patricia Colombo Mescolotti. a Scale bar: 20 cm; b Scale bar: 2 cm; c Scale bar: 5 cm

protodunes migration across deflation sand flats under high ratio of wind velocity/ 
sedimentary supply (Mescolotti et al. 2019). 

The cross-section concave-upward footprints (Fig. 5.7) from the Presidente 
Olegário ichnosite were interpreted as produced by sauropods, considering the 
morphology and dimensions of similar occurrences (Avanzini 1998; Gatesy 2003; 
Romano and Whyte 2003; García-Ramos et al. 2006; Falkingham et al. 2016; Sanz 
et al. 2016; Campos-Soto et al. 2017; Díaz-Martínez et al. 2018; Mescolotti et al. 
2019; Carvalho et al. 2021a). The trackmaker could be a large sauropod similar to 
Tapuiasaurus macedoi, a Titanosauria of the family Nemegtosauridade found in the 
Aptian of Quiricó Formation (Zaher et al. 2011). The other cross-section footprint 
that is a narrow shaft, slightly curved with a pointed impression is related to a tridactyl 
trackmaker, in which digit III supported a greater load and consequently its marked 
impression in the substrate. The medium-sized Abelisauroidea Spectrovenator ragei 
from the Quiricó Formation (Zaher et al. 2020) could be a good example of track-
maker to this footprint morphology. In bipedal dinosaurs, the digit III exerts a higher 
pressure on the substrate, conducting to a greater deformation in the central area of 
the cast as suggested by Gatesy et al. (1999), Milàn and Bromley (2006), Falkingham
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Fig. 5.7 Two cross-section concave upward footprints in the interdune-dune contact. The probable 
trackmaker is a sauropod. Facies Sl—parallel-laminated sandstone. Photograph courtesy by Patricia 
Colombo Mescolotti 

and Gatesy (2014) and Milàn et al. (2004, 2006) that analyzed the sediment deforma-
tion induced by theropod foot movements during a stride. Besides, as proposed by 
Delcourt et al. (2024) the distribution of abelisaurids was driven by climatic condi-
tions because they were well adapted to semi-arid conditions and diversified in size 
and number of species. 

5.4 Paleogeographical Distribution of the Footprints 

At the end of the Jurassic and beginning of the Cretaceous, a region of great aridity 
was established in the interior of the Gondwana continent. The eolic and fluvial 
sandstones found in Rio Grande do Sul State (Guará Formation, Late Jurassic), 
indicate a semi-arid climate (Scherer and Lavina 2005, 2006). At the beginning of 
the Cretaceous (Scherer 2000, 2002; Scherer et al. 2002), there was a change in 
climate, with hyperarid conditions, establishing a wide desert known as the Botucatu 
Paleodesert (Almeida 1953; Bertolini et al. 2021). The origin of the Botucatu Pale-
odesert (Botucatu Formation) resulted from the geographic configuration defined 
from the end of the Permian, with the origin of Pangea. The area occupied by this 
paleodesert reached about 1,300,000 km2, covering central-southern Brazil, northern 
Uruguay, eastern Paraguay and eastern Argentina. The ichnofauna of the Botucatu 
Formation is an endemic fauna of an extremely arid environment (Leonardi and 
Sarjeant 1986) including “coelurosaurs”, “carnosaurs”, ornithopods, and mammals 
trackmakers (Leonardi 1980; Leonardi 1981a, b; Leonardi 1991; Leonardi and Godoy 
1980). The presence of conchostracans indicates the existence of temporary lakes 
(Cardoso 1965).
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The paleogeographical position of continental landmasses, the low eustatic sea 
level and atmospheric currents, defined a climate of great aridity during almost all of 
the Mesozoic (Almeida and Carneiro 1998). This climate changed after the breakup 
of Gondwana during the Cretaceous, which led to a modification in the atmospheric 
and oceanic currents, humidity and temperature and, therefore, to the disappearance 
of this great desert. 

During the Late Cretaceous, regional arid conditions are still persistent as observed 
in the deposits of the Caiuá Group. It is a quartz and feldspathic sandstones succes-
sion, fine to-medium grained size, reddish in color, with large cross stratifications 
presenting an ichnofauna of theropods and mammals (Leonardi 1977; Leonardi 
1981a, b; Leonardi 1991). The dinosaur tracks in this unit are few, with only one large 
theropod trackway, one trackway and an isolated footprint of a “coelurosauriform”. 
None of these are similar to those found in the Sanfranciscana Basin. Their morpholo-
gies are masked by a wide deformation zone on the surrounding sandy matrix, not 
allowing clearly recognizing the contours of the footprints and their digits. 

The stratigraphic levels of the Sanfranciscana Basin (Três Barras Formation) 
where the fossil footprints are found are indicative of humid interdunes areas, with 
subordinated deflationary pavements (Kattah 1991). The footprints with a clear 
morphology would indicate the moments of greater wetness of the substrate, while 
without clear morphology would have formed in conditions of dryness. During the 
living time (Barremian-Albian) of the trackmakers occurred great environmental 
changes related to the South Atlantic opening (Mescolotti et al. 2019), especially a 
more humid climate and the first marine ingressions from the Equatorial region. 

5.5 Paleoenvironmental and Paleoclimatic Contexts 

The more diverse biologic activity in deserts occurs in interdune areas. The parame-
ters controlling the kind of activity in those settings are moisture, sedimentation rate, 
and the size of surrounding dunes. Especially in the interdune environments, such 
as the wadi, there is a high potential to the preservation of the fossil footprints. The 
maintenance of tracks in aeolian sandstones is directly related to the cohesion of the 
sand, related to a high humidity, when the trackmaker induces the deformation of the 
substrate (Ahlbrandt et al. 1978). Furthermore the fast burial also plays an important 
role in the preservation, especially in the leeward and interdune areas, which are the 
most conducive to preserving footprints. 

The origin of the wetness in the sand dunes that allow the footprints preservation 
is controversy. Leonardi (1980) considered that the preservation of footprints in the 
Botucatu Paleodesert would be related to a higher humidity (because of dew) of 
the sandy surface during the night, when the footprints would be produced and at 
dawn there would be their subsequent covering by dry sand. Another possibility 
would be the existence of a high groundwater level, which would allow a greater 
wetness of the sediments and, consequently, the preservation of the footprints even 
in the dunes foreset. However, the predictive model of Winkler et al. (1991), of
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restricting occurrences of fossil footprints to interdune areas, is the most common. 
Interdune deposits represent a complex sedimentation of aeolian and non-aeolian 
environments ranging from deflation surfaces to ephemeral lakes. Due to the high 
local sedimentation rate and grain size of the surrounding active dunes, the potential 
for fossil footprints preservation in interdune areas is high. In addition, observation of 
current environments demonstrates that the wetness conditions in these areas allow 
the proliferation of a diverse biota (Carvalho and Kattah 1998). 

In this way, the lack of fossils in deposits adjacent to the interdunes would reflect 
the low original biological productivity and the low diversity of large animals in an 
area of active dunes. Winkler et al. (1991) postulated that the presence of fossil tracks 
and fossils of large vertebrates in the interdune deposits of the Navajo Sandstone 
(Middle Jurassic, Arizona, USA) would imply the existence of a complex food chain, 
and may even represent temporal intervals not typical of the hyper aridity of deserts, 
a moment where the dunes are most active. Leonardi (1991) considered that the 
dinosaur tracks in the desert paleoenvironments of South America generally belong 
to bipedal and small-sized forms. The frequency of theropods is high (87%) with a 
predominance of “coelurosauriforms”, absence of sauropods and rare ornithopods, 
which possibly would have been the largest dinosaurs in arid environments. A similar 
conclusion was also reached by Lockley and Conrad (1991) in the study of the Glen 
Canyon and San Rafael groups (Jurassic, USA), in which most of the fossil footprints 
in desert paleoenvironments are those produced by theropods. There would be a 
preferential distribution of these in the playa lake and interdune fluvial deposits, 
when compared with the paleoenvironments that represent the dune fields. 

The footprints of the Três Barras Formation (João Pinheiro ichnosite) are in a 
context of sandstones with fine to medium grain size, poorly selected. There is inter-
calation of centimetric levels of coarse-grained sandstones, claystones and siltstones. 
The color is pink to reddish. Under the microscope, crystals of calcite and dolomite are 
observed in the siltstones. The sedimentary structures are dissecation cracks, symmet-
rical and climbing wavy ripples, and channel cross-bedding. The pavement on which 
the footprints are found is poor selected quartz sandstone, locally with ripple marks 
and tabular cross-stratifications. Above the level of footprints there is conglomeratic 
sandstone with faceted pebbles. Kattah (1991) interpreted this stratigraphic level as 
indicative of an area of humid interdunes, with subordinated deflationary pavements. 
Most footprints preserved on this surface do not have clear morphological details, 
which must be related to a very loose sandy substrate. However in some cases (JPAR 
01 and JPAR 03) the anatomical details such as claws and phalangeal pads are quite 
evident. Reynolds (1991) and Lockley (1991) consider that this fact results from 
fluctuations in the hydrostatic level during the formation of footprints. The foot-
prints with a clear morphology would indicate the moments of greater moisture of 
the substrate. The others would have formed in conditions of greater aridity, when 
the groundwater is lower. Drier sand would not have been cohesive enough to allow 
for better footprint preservation. 

The fossil footprints from the João Pinheiro ichnosite were recognized by morpho-
logical data from the autopodia on the bedding plane. Otherwise the footprints from 
the Presidente Olegário ichnosite reach many sedimentary levels beyond the surface



5 The Dinosaur Footprints in the Cretaceous Aeolian Deposits … 137

and they are preserved as deformation structures which can be observed in cross-
sections. They are directly related with the trampling by terrestrial vertebrates and 
the pressure generated during the contact between a tetrapod autopodium and the 
substrate, leading to the origin of load structures with successive laminae defor-
mation (Carvalho et al. 2021a, b, 2022). Deformation of the print-bearing surface, 
by the dinosaur trampling, favors the preservation of underprints and transmitted 
prints on bedding planes beneath the primary footprint-bearing surface as “under-
tracks” or “ghost prints” (Sarjeant and Leonardi 1987). The stratigraphic analysis of 
Mescolotti et al. (2019) considered a wet aeolian system including a wet interdune 
facies, interdune-dune contact and dune foresets as the environments where these 
footprints were preserved (Fig. 5.8).

5.6 Conclusions 

The desert environment is a challenging geological context to the preservation of 
footprints. The dry sands, the low humidity, the inconstancy and fast changes in the 
substrate, the deflation, generally destroy the tracks or just allow a deformation struc-
ture in the contact between the trackmaker’s feet and the superficial layers. Despite 
these restrictions, some environmental settings especially in the wet interdune areas, 
where there is a more diverse biologic activity in deserts, present a high potential 
to the preservation of the footprints. Interdune deposits represent a complex sedi-
mentation of aeolian and non-aeolian environments ranging from deflation surfaces 
to ephemeral lakes. Due to the high local sedimentation rate and grain size of the 
surrounding active dunes, the potential for fossil footprints preservation in the inter-
dune areas is high. In addition, observation of current environments demonstrates 
that the moisture conditions in these areas allow the proliferation of a diverse biota. 
Then, the maintenance of tracks in aeolian sandstones is directly related to a high 
humidity that allows the cohesion of the sand. The fast burial also plays an important 
role in the preservation, especially in the leeward and interdune areas, which are the 
most conducive to preserving footprints. 

The footprints from the Sanfranciscana Basin are found in two localities where the 
Três Barras Formation outcrops: João Pinheiro and Presidente Olegário ichnosites. 
There are eleven dinosaur footprints in the João Pinheiro ichnosite preserved as 
concave epilelief with infilling of fine to coarse-grained reddish sandstone similar 
to the surrounding matrix. In the Presidente Olegário ichnosite the footprints are 
observed as cross-section concave upward deformation structures and narrow shaft 
straight borders. These two sets of footprints indicate small and medium-sized 
theropods, ornithopods and sauropods. Aptian age deposits of the Sanfrancis-
cana Basin (Quiricó Formation) present osteological remains of Abelisauroidea 
(Noasauridae and Abelisauridae), Dromaeosauridae and Titanosauria (Nemeg-
tosauridae) that could be related to some of the trackmakers of João Pinheiro and 
Presidente Olegário ichnosites.
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Fig. 5.8 Environmental reconstruction of the wet aeolian system of Três Barras Formation, 
Sanfranciscana Basin, and the dinosaur trackmakers (Art by Guilherme Gehr)
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Chapter 6 
The Cretaceous Araripe Basin Dinosaur 
Tracks and Their Paleoenvironmental 
Meaning 

Ismar de Souza Carvalho, Giuseppe Leonardi, and Jaime Joaquim Dias 

6.1 Introduction 

During the Mesozoic in South America, the terrestrial ecosystems were remodeled 
due to changes in the configuration of continents and oceans, particularly the opening 
of the South Atlantic Ocean by the Gondwana supercontinent rifting process (Matos 
1992; Assine 1992, 2007; Marques et al. 2014). Within this context, continental 
depressions were formed analogous to pull-apart basins, with their genesis by tran-
scurrent tectonics along faults during the opening of the Atlantic Ocean (Matos 
1992). The Araripe Basin is the largest among these interior sedimentary basins in 
northeastern Brazil (Fig. 6.1), covering an approximate area of 12,200 km2 in the 
southern part of the Ceará State, and portions of the Pernambuco and Piauí states 
(Carvalho et al. 2012; Fambrini et al. 2020; Dias et al. 2022). The Araripe Basin is 
not only important for understanding the environment and climate of the Brazilian 
Mesozoic but also stands out for the high quantity and quality of its fossils, including 
dinosaur footprints found in four lithostratigraphic units: Mauriti, Rio da Batateira, 
Crato, and Exu formations (Carvalho et al. 1995, 2018, 2019a, b, 2021a, b, 2022, 
2023).
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Fig. 6.1 Geological map of the Araripe Basin and the location of the dinosaur footprints ichnosites. 
The geochronological data, lithostratigraphic unit’s limits and nomenclature were based in Ponte 
and Appi (1990), Fambrini et al. (2011), Rios-Netto et al. (2012), Assine (2007) and Arai and Assine 
(2020) 

The footprints in the Araripe Basin are imprints in the upper bedding surface or 
even as structural deformations only visible in cross section. They allow the eval-
uation of substrate consistency besides the potential trackmaker identification. The 
environmental contexts of the dinosaur footprints from the Araripe Basin include the 
dinosaur trampling in fluvial sand bars, floodplains, deltas, and saline-alkaline lake 
borders. Then these footprints permit us to evaluate the diversity of the Cretaceous 
biota in this region and also discuss the environmental changes throughout the early 
and beginning of the Late Cretaceous in this region. 

6.2 Geological Context 

The sedimentary filling of the Araripe Basin begins with a controversial Paleozoic 
sequence (Carvalho et al. 2024), followed by three Mesozoic super sequences known 
as Pre-Rift, Rift, and Post-Rift (Ponte and Appi 1990; Assine 2007; Assine et al. 
2014). The full sedimentary succession of the basin (Fig. 6.2) rests unconformably on 
the igneous and metamorphic rocks of the Precambrian Piancó-Alto Brígida Terrain, 
part of the Transversal Zone of the Borborema Province (Brito-Neves et al. 2000).

The Mauriti Formation footprints occur in two ichnosites: Milagres (Milagres 
County) and Mauriti (Mauriti County), both in the Ceará State, in a succession of 
coarse and fine-grained sandstones. The unit is constituted of conglomerate and
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Fig. 6.2 Araripe Basin 
stratigraphical chart and the 
lithostratigraphic units with 
dinosaur footprints. 
Abbreviations: JURAS: 
Jurassic; TIT: Tithonian; 
BER: Berriasian; VAL: 
Valanginian; HAU: 
Hauterivian; BAR: 
Barremian; CEN: 
Cenomanian; LK: Lake; 
CST: Coastal environment; 
SAB: Sabhka; RIO DA BAT: 
Rio da Batateira Formation. 
The geochronological data 
and nomenclature of the 
lithostratigraphic units were 
based in Ponte and Appi 
(1990), Fambrini et al. 
(2011), Rios-Netto et al. 
(2012), Assine (2007) and  
Arai and Assine (2020)

pebbly sandstone that grades into medium-to coarse-grained sandstone towards the 
top in a sedimentary succession interpreted as a braided fluvial system during a 
hot and dry climatic context. The fossil record is marked only by the presence of 
invertebrates and vertebrate ichnofossils, such as dinosaur footprints (Ponte and Appi 
1990; Assine 1992; Carvalho et al. 1994, 1995, 2023, 2024; Batista et al. 2012; Cerri  
et al. 2022). 

Initially designated as Cariri Formation, of Neocomian age (Beurlen, 1962), it was 
renamed as Mauriti Formation (Gaspary and Anjos, 1964) and has been interpreted as 
indicative of an initial depositional event in the Lower Paleozoic, Upper Ordovician 
to Lower Devonian, based on lithostratigraphic correlation with the Serra Grande 
Group (Parnaíba Basin) and the Tacaratu Formation of the Jatobá Basin (Ponte and 
Appi 1990; Assine 1992). Sedimentologic, stratigraphic, detrital zircon U–Pb dating 
and provenance approaches based on trace elements in detrital rutile established that 
the sedimentation of the Mauriti Formation started after the Late Cambrian, probably 
extending through the Ordovician (Cerri et al. 2022). However, the identification of 
theropod and possibly ornithopod tracks in the Milagres and Mauriti ichnosites may
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indicate a Neojurassic to Early Cretaceous age for the Mauriti Formation, suggesting 
that the beginning of deposition in the Araripe Basin was restricted to the last part 
of the Mesozoic (Carvalho et al. 1995, 2023). This Mesozoic age is also supported 
by tectonic and sedimentary analyses (Berthou 1990; Mabesoone 1990). 

The Upper Jurassic Pre-Rift super sequence of the Araripe Basin (Assine 2007; 
Assine et al. 2014), consists of the Brejo Santo and Missão Velha formations, which 
include shales, mudstones, and locally conglomeratic sandstones interpreted as allu-
vial and lacustrine sedimentary systems (Ponte and Appi 1990; Assine 1992, 2007; 
Fambrini et al. 2011, 2013). Furthermore, the Rift super sequence is characterized 
by the facies of the Abaiara Formation, which was formed in shallow lakes and 
braided channel fluvial plains associated with the rifting of Gondwana in the Early 
Cretaceous (Assine 1992, 2007). 

The Santana Group indicates the beginning of the Aptian Post-Rift I super 
sequence (Assine 2007; Assine et al. 2014), and consists of the Rio da Batateira, 
Crato, Ipubi, and Romualdo formations that encompass the Brazilian Alagoas local 
stage. The Rio da Batateira Formation (also called Barbalha Formation by Assine 
et al., 2014) presents sandstones, micro conglomerates, siltstones, carbonates, and 
bituminous shales of fluvial-lacustrine and deltaic origin (Chagas et al., 2007; Paula-
Freitas et al. 2007; Paula Freitas and Borghi 2011). The multiproxy approach elab-
orated by Varejão et al. (2021a) includes sedimentological, paleontological, ichno-
logical, and chemo-stratigraphic analyses through the upper portion of the Rio da 
Batateira Formation, the entire Crato Formation, and the lower portion of the Ipubi 
Formation. These authors recorded the first marine influence in the Araripe Basin 
through the uppermost portion of the Rio da Batateira Formation (also referred to 
as Barbalha Formation), in which syn-rift fluvial channels, and overbank deposits 
with sedimentary transport from north-west to south-east, were bounded upward by 
bayhead deltas, commonly developed in the innermost part of bays and estuaries in 
transgressive coastlines. The Fundão Member (Rios-Netto et al. 2012), comprises a 
very fossiliferous horizon in the Rio da Batateira Formation, in which algal lamina-
tions, coprolites (possibly from fish), ostracods, conchostracans, fish, amber, plant 
fragments, and dinosaur tracks (sauropods and theropods) are recorded (Hashimoto 
et al. 1987; Rios-Netto et al. 2012; Carvalho et al. 2021a). 

During the deposition of the Crato Formation, there is a wide variety of continental 
and transitional environments, also with records of marine incursions (Neumann and 
Cabrera 2002a, b; Varejão et al. 2021a; Ribeiro et al. 2021). Within the lacustrine 
hypersaline succession (Varejão et al. 2021a), there are abundant and diverse exquisite 
preserved fossils that give the Lagerstätte status for the unit (Martill 2007; Selden 
and Nudds 2012). The Crato Biota, as referred by Dias et al. (2022), is character-
ized by fungi, plants, arthropods, fish, frogs, lizards, turtles, pterosaurs, non-avian 
dinosaurs, and birds living in a wetland-type ecosystem influenced by climatic oscil-
lations between wetter and drier periods (Ribeiro et al. 2021). The marine influence 
in the Crato Formation is attested by tide-dominated bay facies, and confined bay 
with typical facies deposited in foreshore to upper shoreface conditions with storm 
deposits (hummocky cross-stratified sandstones). The maximum flooding surface is 
a dark shale below these foreshore-to-shoreface facies, marking the beginning of
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the Highstand Systems Tract that culminates with the deposition of the evaporites 
from the Ipubi Formation (Varejão et al. 2021a). The presence of micro foraminiferal 
linings in the transition between the Crato and Ipubi formations suggests that these 
evaporites from the Ipubi Formation may have been putatively precipitated by the 
evaporation of marine waters (Goldberg et al. 2019). 

Although there is the influence of marine environments in other facies associa-
tion (Varejão et al. 2021a, b) the dinosaur footprints of the Aptian in the Araripe 
Basin occur in floodplain areas of meandering rivers and low-energy lake deposits, 
without evidence of a marine influence. In the Rio da Batateira Formation, the 
tracks occur in fluvial siliciclastic successions (Carvalho et al. 2019a, b, 2021a). 
In the Crato Formation, however, the footprints are restricted to the locality of Três 
Irmãos mine in the carbonate deposits formed in hypersaline alkaline lakes and 
microbial-induced(Carvalho et al. 2021a). 

The Aptian in the Araripe Basin also includes the Ipubi and Romualdo formations 
(Assine et al. 2014). In diastemic contact with the Crato Formation, the Ipubi Forma-
tion includes evaporite intercalations (gypsum and anhydrite) and green and/or pyro-
bituminous shales. They were deposited in a shallow and saline coastal environment, 
under a warmer climate with precipitation from brines (Assine et al. 2014; Bobco 
et al. 2017). The Alagoas local stage sedimentation of the Araripe Basin ends with the 
lagoonal and marine deposits of the Romualdo Formation, consisting of conglomer-
ates, sandstones, marls, shales, and limestones. This unit also preserves an abundant 
and diverse biota, including foraminifera, palynomorphs, corals, mollusks, arthro-
pods, echinoids, fishes, turtles, crocodyliforms, pterosaurs, dinosaurs, and plants 
(Abreu et al. 2020; Araripe et al. 2021; Lopes and Barreto 2021; Dias et al. 2022; 
Santana et al. 2022). 

The Cretaceous sedimentation of the Araripe Basin finishes during the late Albian 
to early Cenomanian. This is recorded by the deposits of the Araripe Group, consti-
tuted by the Araripina and Exu formations (Assine 1992, 2007). The Araripina 
Formation are cyclic distal plain deposits of alluvial fan systems, while the Exu 
Formation is essentially fine-grained quartz sandstones with siltstones and occa-
sional mudstones deposited in a fluvial environment (Assine 2007; Carvalho et al. 
2021b, 2022). The dinosaur footprints are recorded in the fluvial floodplains and 
sand sheets of the Exu Formation, during episodes of hot climate (Carvalho et al. 
2021b, 2022). 

6.3 Footprints: Diversity and Paleobiological Interpretation 

Although dinosaur tracks are commonly found in the surrounding basins of Sousa, 
Uiraúna-Brejo das Freiras, Malhada Vermelha, and Lima Campos, they are still rare 
in the Araripe Basin (Leonardi 1994; Leonardi and Spezzamonte 1994; Carvalho  
2000; Carvalho et al. 2021a, b, 2022, 2023). The footprints from the Araripe Basin 
are found in four stratigraphic units: Mauriti, Rio da Batateira, Crato, and Exu
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formations, which were deposited in very distinct temporal, paleogeographical, and 
environmental contexts. 

In the Mauriti Formation, the Milagres ichnosite (Fig. 6.3) presents theropod and 
ornithopod tracks. The theropod tracks are three isolated footprints (ARMI 01, ARMI 
02, ARMI 04) and a short trackway with three footprints (ARMI 05). All of them 
are tridactyl, mesaxonic, with pointed digits, some of them with claw impressions. 
The rear borders of the footprints are V-shaped or angular (Fig. 6.4). The sandstone 
filling of the footprints is similar to the surrounding matrix. The footprints are large, 
ranging from 28–40 cm in length and 20–30 cm in width (Carvalho et al. 1995). The 
probable trackmakers are large theropods related to the groups that are already known 
in the Cretaceous deposits of the basin, such as the Spinosauridae Angaturama limai 
or Irritator challengeri (Kellner and Campos 1996; Martill et al. 1996). However, 
the footprints from Milagres ichnosite are certainly older than the Aptian-Albian age 
of these fossils. There is also an isolated footprint related to an ornithopod (ARMI 
03). It is a tridactyl and mesaxonic footprint with rounded extremities of the three 
digits and wide concave hypexes (Fig. 6.3b). The digits II and IV are 5 cm in length 
and digit III is longer showing 10 cm in length. The footprint is 20 cm in width 
and its length is also 20 cm. The rear portion of the footprint shows an extrusion 
rim, with a rounded and wide crescent shape. Its color is more reddish than the 
surrounding matrix. The absence of claws, the wide concave hypexes, and the wide 
width allowed its interpretation as an ornithopod footprint (Carvalho et al. 1995). 
Osteological elements of this group are unknown in the Araripe Basin, although 
tracks are found in the surrounding Rio do Peixe basins.

The Mauriti ichnosite (Fig. 6.5), Maurity county, presents at least seven isolated 
footprints. There are four tridactyl, mesaxonic footprints with pointed (?theropod) 
and rounded digits (?ornithopod). The other imprints are rounded depressions with 
no clear digit impressions. The partial sandstone filling of the footprints is similar to 
the surrounding matrix. They range from 30–48 cm in length and 25–48 cm in width. 
The trackmakers of the theropod footprints could be the large theropods related to 
those already known in the Araripe Basin’s Cretaceous formations (Carvalho et al. 
2023).

The Rio da Batateira Formation tracks (Aptian) are observed as cross-section 
casts (Figs. 6.6 and 6.7). They are three-dimensional casts in cross-section, as pillar-
like morphologies, small- and large-sized concave-up and sub-cylindrical structures. 
They allow examination of the deformation of the underlying layers and also how 
the footprints were filled by the sediments deposited afterward. The casts may also 
be presented as amorphous bulges or sedimentary layers deformed and downfolded, 
reaching one meter below the depositional surface.

The dinosaur tracks of the Rio da Batateira ichnosite (Fig. 6.6a) can seem to be 
simple load casts; however, they are interpreted as dinosaur trampling, and more in 
detail an association of distinct groups of dinosaurs. These load structures, interpreted 
as dinosaur footprints, measure 15–120 cm in length and 20–100 cm in depth, in fine-
grained siliciclastic beds, such as shales, siltstones, and fine sandstones. The depth 
penetration, which can reach 100 cm, probably is due to the higher plasticity of 
the substrate, similar to some sauropod tracks from the Upper Jurassic of Spain
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Fig. 6.3 Milagres ichnosite, in the Milagres ranch. a Outcrop of the Mauriti Formation, where the 
dinosaur tracks are found. b An isolated ornithopod footprint (ARMI 03) showing a contrasting 
color with the surrounding matrix. Scale bar: 5 cm

(Valenzuela et al. 1988; García-Ramos et al. 2006). In Rio da Batateira ichnosite it is 
also possible to observe the digit impressions in some of the casts (Fig. 6.6b), enabling 
their interpretation as belonging to bipedal or quadruped dinosaurs (Fig. 6.6b–e). The 
largest footprints are produced in an exposed waterlogged substrate or in a flooded 
area, where was possible the liquefaction of the sediments of sauropod trackmakers 
(Fig. 6.7). The smaller ones present a “V-shaped” cross-section with the evidence 
of a more prominent digit that exerts a higher pressure on the substrate, conducting 
a greater deformation in the central area of the cast. It probably corresponds to 
digit III of small theropods, like Mirischia asymmetrica or Santanaraptor placidus 
(Naish et al. 2004; Kellner 1999) or some small ornithopod. The interpretation of 
these tracks indicates the presence of quadrupedal (probably sauropod) and bipedal
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Fig. 6.4 Footprints from the Mauriti Formation, Milagres ichnosite. a, b, d Isolated theropod 
footprints (ARMI 01, ARMI 02, ARMI 04) with sharp pointed digits; c Ornithopod isolated 
footprint (ARMI 03); e Short track (ARMI 05) with three sequencial tridactyl footprints interpreted 
as a theropod trackway. ARMI—Araripe Basin, Milagres ichnosite. Scale bars: a–d 10 cm; e 30 cm

(theropod and ornithopod) dinosaurs (Carvalho et al. 2019a, b, 2021a). These tracks 
are an important tool for the reconstruction of the terrestrial Cretaceous ecosystem 
in the context of the Araripe Basin. It is noteworthy that no sauropod body fossils 
were so far found either in this or other lithostratigraphic units of the Araripe Basin 
(Carvalho et al. 2019b). 

In the Crato Formation (Nova Olinda County, Ceará State), in the Três Irmãos 
ichnosite, the dinosaur tracks are found in fine-grained sandstones, intercalated with 
shales and laminated carbonates (Fig. 6.8). They range from 35 to 100 cm in length 
and 30–50 cm in depth. The pressure that occurred during the contact of dinosaur 
feet and the substrate led to the deformation of the upper surface of the sediments, 
with the origin of load structures accompanying a concave aspect with successive 
lamina deformation. Tracks may occur as isolated or superimposed casts in cross-
section, as pillar-like or concave-up morphologies, but casts are more commonly 
irregularly cylindrical to “U” shaped (with a larger basal diameter than at the top, as 
usually occurs with undertracks). Undulating forms that grade into load casts may 
be recognized as tracks when they occur along the same bedding plane adjacent to 
recognizable tracks, and when they have relief and dimensions similar to those of 
associated distinct tracks. The substrate should be soft and moist, with a relatively 
high cohesiveness (Carvalho et al. 2018) allowing for the deformation of successive
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Fig. 6.5 Footprints from the Mauriti Formation, Mauriti ichnosite. a Outcrop of the Mauriti Forma-
tion with the dinosaur footprints; b–e Isolated footprints of small and large theropods (ARMA 
01, ARMA 02, ARMA 03, ARMA 04). ARMA—Araripe Basin, Mauriti ichnosite. Scale bars: 
b–e 10 cm; f 20 cm

layers and developing undertracks. The dinoturbation index was defined as the degree 
of dinosaur trampling (Lockley and Conrad 1989) and its intensity over a surface 
(light: 0–33%, moderate: 34–66%, and heavy: 67–100%). In the Rio da Batateira 
Formation, the dinoturbation index can be considered heavy, while in the Crato 
Formation, it is light (Carvalho et al. 2021a).
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Fig. 6.6 Footprints from the Rio da Batateira Formation, Rio da Batateira ichnosite. a Riacho 
da Batateira outcrop, Cascatinha locality where are found the cross-section footprints; b Section 
of a track cast with the digit imprints in the lower portion, indicating a probable sauropod track. 
Dashed line indicates the limits of the foot contact with the sediment, the original surface stepped 
on; c Digit III (indicated by an arrow) exerts a higher pressure on the substrate, conducting to a 
greater deformation in the central area of the cast, feature common in theropod footprints; d A 
large flattened depression, bordered by displacement rims (high declivity borders) interpreted as 
a footprint of a quadrupedal dinosaur, probably a sauropod; E. Cross-section of a small footprint 
with a rounded outline, showing the distinct patterns of deformation of the substrate by the dinosaur 
trampling. Scale bars: b 15 cm; c 10 cm; d 20 cm; e 10 cm
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Fig. 6.7 Footprints from the Rio da Batateira Formation, Rio da Batateira ichnosite. a Outcrop 
with dinoturbation structures in the margins of Riacho da Batateira. b Disturbed layers resulted 
from the vertebrate trampling; c The cross-section through dinosaur tracks displays large structural 
and dimension variations indicated by arrows; d The high-water content induces the deformation 
by the foot impact up to one meter below the surface; e High deformation of the substrate including 
fluidization (indicated by an arrow) induced by the dinosaur trampling. Scale bars: 30 cm
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Fig. 6.8 Footprints from the Crato Formation, Três Irmãos ichnosite. a Outcrop of Crato Formation, 
Três Irmãos Quarry, showing the succession of laminated carbonates and the level with cross-section 
tracks; b A cast of the true track with surrounding strongly bent and downfolded layers indicate 
a deformation due to a foot impact of a sauropod or a large quadrupedal dinosaur; c Concave 
deformations induced by the foot load pression. The cross-section footprints are eroded in its upper 
surface before the following deposition of fine sandstones. Arrows indicate the position of the 
footprints. Scale bars: a 1 m;  b–c 30 cm
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Marty (2011) and Marty et al. (2006) indicated that, after the foot impact, some 
structures are apparent on the surface (true track, overall track, underprint) and others 
are hidden within the substrate (undertrack, deep track). The types of deformation 
indicate that theropods adopted many walking strategies at different times, resulting 
in the formation of a stacked succession of undertracks that gradually becomes wider, 
shallower, and less detailed downward (Milàn et al. 2006). The deformation structures 
in a vertical section allow obtaining additional details about the walking kinematics 
that rarely could be available from the true track at the surface (Milàn and Bromley 
2006), usefulness for the correct interpretation of the trackmaker and the substrate 
consistency (Milàn et al. 2004, 2006). Laboratory track simulations presented by 
Manning (2008) enabled the analysis of the magnitude and distribution of load acting 
on surface sediments, transmitting through and deforming subsequent layers. This 
aspect is clear in the tracks at the Rio da Batateira and Crato formations, due to 
the deformation produced in the lower sedimentary levels after the footprint impact 
(Carvalho et al. 2021a). 

The Exu Formation footprints (Barbalha County, Ceará State), Barbalha ichnosite, 
are about 20 cm in height and 30 cm wide (Fig. 6.9). They are evident on a vertical 
cross-section of a sandstone bed as concave-up deformations of the lamina-set. Digit 
impressions or other morphological features of the footprints are not preserved 
(Carvalho et al. 2021b, 2022). Therefore, the geometry and dimensions of these 
structures allow us to interpret them as similar to dinoturbation structures produced 
by sauropods. These dinosaur footprints enhance the understanding of the genetic 
interpretation of deformational structures and paleoenvironmental scenarios of the 
Late Cretaceous from Northeastern Brazil.

6.4 Paleogeographical Distribution of the Footprints 

The dinosaur footprints of the Araripe Basin are recorded in three unquestionably 
Cretaceous lithostratigraphic units (Rio da Batateira, Crato, and Exu formations), 
and one with controversial age but adopted as Jurassic-Cretaceous based on its 
dinosaur tracks (Mauriti Formation). Thus, the paleogeographic context during the 
Late Jurassic and Early Cretaceous of the Araripe Basin is linked to the rifting 
process of the Gondwana supercontinent, with distinct tectonic evolution during the 
pre-rift, rift, and post-rift phases, which influenced the pattern of biota dispersal and 
speciation processes. 

The Mauriti Formation footprints of the Milagres and Mauriti ichnosites (Carvalho 
et al. 1994, 1995, 2023, 2024) present a temporal inconsistency, as the Mauriti Forma-
tion is frequently considered part of an Early Paleozoic depositional cycle (Ponte and 
Appi 1990; Assine 1992, 2007; Cerri et al. 2022). The NW paleoflow indicates that 
the main source areas for the Mauriti fluvial system are located in the Transversal 
and Southern zones of the Borborema Province (Cerri et al. 2022). Meanwhile, the 
presence of dinosaur footprints in the Mauriti Formation suggests that it is certainly a 
Mesozoic unit (Carvalho et al. 1995, 2023). Due to the geographical proximity with
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Fig. 6.9 The Cenomanian Exu Formation and its footprints, Barbalha ichnosite. The Exu Formation 
is the last Cretaceous sedimentation cycle in the Araripe Basin, composed of coarse to fine-grained 
reddish sandstones. a Outcrop of the Exu Formation with a succession of channel cross-stratification 
and laminated bimodal sandstones; b Concave-up deformation of the lamina-set, 20 cm height 
and 30 cm wide, observed on a vertical cross-section. Digit impressions or other morphological 
features of the footprints are not preserved; c Deformations as concave-up features interpreted as 
dinoturbation structures observed in cross-section. Arrows indicate the position of the footprints. 
Scale bars: c 20 cm; d 30 cm

Rio do Peixe basins, that present similar dinosaur tracks, probably Early Cretaceous 
age is suggested (Carvalho et al. 2023, 2024). The importance of these two ichnosites 
confirms the need to revise the age of the Mauriti Formation and the paleogeograph-
ical context of these footprints, establishing a new stratigraphic framework for the 
lower successions of the Araripe Basin (Carvalho et al. 2023, 2024). If the Jurassic-
Cretaceous age was confirmed, the paleogeography of the Mauriti Formation would 
not be related to the Western Paleozoic Gondwana, as indicated by Cerri et al. (2022),
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but with the Mesozoic Gondwana supercontinent evolution during the Jurassic and 
Cretaceous, as the others lithostratigraphic units of the Araripe Basin. 

The break up between the South American and African continents occurred 
predominantly due to east-west divergent tectonic, during the Jurassic. The rupture 
began in the southern part of Gondwana and progressively extended northward 
throughout the Early Cretaceous, shaping itself along pre-existing weakness zones 
(Françolin and Szatmari 1987). Valuable paleobiogeographic data from Maisey 
(2011) show that in the pre-rift stage, there were no individual depocenters in the 
Brazilian sedimentary basins, resulting in low diversity of the Gondwanan biota at 
the genus and species levels. In Western Gondwana, Brazil and West Africa was 
a single continuous landmass, sometimes referred to as the Afro-Brazilian Depres-
sion, allowing for extensive taxa dispersion. This distinct pre-rift biota is Gondwanan, 
with a Pangaean origin, and various groups of vertebrates such as mawsoniid coela-
canths, notosuchian crocodiles, and dinosaurs, diversified within Gondwana before 
the breakup (Maisey 2011). Within this context, the dinosaur footprints of the Mauriti 
Formation are included, and the large theropods and an ornithopod as probable track-
makers, would be in this terrestrial scenario of a single continuous continental mass 
before the rifting process of the Gondwana. 

The Brazilian Alagoas local stage is associated with the breakup of the Gondwana 
supercontinent in the Mesozoic. This interval has special importance to the corre-
lation of sub-aerial exposition surfaces throughout the basin. The Aptian dinosaur 
tracks from the Araripe Basin occur in the Rio da Batateira Formation (Fundão 
Member) and Crato Formation, in the Ceará State. They can be observed only in 
cross-section, as three-dimensional natural structures in siliciclastic and carbonate 
successions. 

During the Gondwana breakup, rift valleys were formed and subsequently flooded 
by epicontinental seas during the Aptian, which separated Northeast Brazil from the 
rest of South America, but remained contiguous with Africa (Maisey 2011). The 
Aptian epicontinental seas were formed before the complete detachment process of 
South America and Africa. As a result, these marine incursions do not necessarily 
correspond to tectonic boundaries of rifting but rather represent distinct biogeo-
graphic provinces created through intracontinental vicariance processes due to land 
separations caused by the marine incursions (Maisey 2011). Within this context, 
the biotas of the Aptian formations in the Araripe Basin are included, such as Rio 
da Batateira and Crato, which feature small theropods and sauropods as possible 
trackmakers. 

Taxonomic studies of ostracod fossils from the Rio da Batateira Formation were a 
subsidy for the understanding of the beginning of the opening of the South Atlantic 
Ocean during the Aptian in the Araripe Basin (Santos Filho et al. 2023). The ostracod 
assemblage from the Santo Antônio section presents nine typically brackish-marine 
species, associated with the first marine ingression in the interior of the continent 
during the beginning of the formation of the Atlantic Ocean (Tomé et al. 2022). 
Fauth et al. (2023) present three marine incursion events in the Batateiras unit (two 
of them in the Fundão Member), defined by benthonic and planktonic foraminifera, 
calcareous nannofossils, dinocysts, serpulid tubes, and a mass mortality event of
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mixohaline ostracods. The integration of paleontological, sedimentological, and 
ichnological data by Varejão et al. (2021a) also indicates the deposition under marine 
influence in the upper portion of the Rio da Batateira Formation. The stratigraphic 
architecture and paleocurrents data suggest that marine waters reached the basin 
from the south, with marine ingressions of an incipient South Atlantic Ocean over 
the interior basins of northeastern Brazil (Varejão et al. 2021a). Other sedimentary 
and stratigraphic studies of the Aptian in the Araripe Basin point to a more complex 
scenario, with distinct marine pulses from different directions (Custódio et al. 2017; 
Bom et al. 2021). However, the Tethyan origin of a wide variety of vertebrates, inver-
tebrates, and microfossils groups recorded in the Araripe Basin and other chrono-
related basins of Northeast Brazil suggest marine ingressions from North to South 
(Arai 2014; Pereira et al. 2017; Araripe et al. 2021; Lindoso and Carvalho 2021; 
Kroth et al. 2021). 

Although the dinosaur footprints are still not recorded in the Aptian Romualdo 
Formation of the Araripe Basin, the unit contains five species of theropod dinosaurs 
(see Kellner and Campos 1996; Martill et al. 1996, 2000; Kellner 1999; Aureliano 
et al. 2018; Sayão et al. 2020) and one possible Ornithischia (Leonardi and Borgo-
manero 1981), later considered as a theropod bone (Batista and Kellner 2007). The 
Romualdo Formation records the last marine ingression within the Cretaceous inte-
rior basins of Northeastern Brazil, with, at least, two distinct pulses of marine incur-
sions associated with the formation of a proto-Atlantic Ocean (Assine et al. 2014; 
Custódio et al. 2017; Teixeira et al. 2017; Fürsich et al. 2019; Bom et al. 2021; Kroth  
et al. 2021). The marine ingressions that reached the Araripe Basin during the late 
Aptian formed a vast epicontinental sea in Northeast Brazil, with an area much larger 
than the current Araripe Basin (Arai, 2014). These interior seas are characterized by 
water masses that rest directly on the continental crust and are commonly formed by 
short-term variations in sea level, resulting in abrupt fluctuations in water salinity, 
temperature, and oxygenation (Kroth et al. 2021) recorded in the Rio da Batateira, 
Crato, Ipubi, and Romualdo formations. 

While the sedimentary succession of the Santana Group represents a transgres-
sive–regressive cycle associated with sea-level variations during the Aptian, the 
sedimentary deposits of the Araripe Group (which includes the Araripina and Exu 
Formations) indicate a differentiated tectonic uplift during the late Albian and early 
Cenomanian (Assine 2007). During the Cenomanian, there was the establishment 
of oceanic crust with the separation of the South American and African continents 
(Maisey 2011). The last record of dinosaur footprints in the Araripe Basin occurs in 
the Exu Formation, a Cenomanian fluvial succession (Carvalho et al. 2021b, 2022) 
that represents the return to the strictly continental conditions in the Araripe Basin, 
not being directly related to the marine influence of the opening of the South Atlantic 
Ocean.
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6.5 Paleoenvironmental and Paleoclimatic Contexts 

6.5.1 Mauriti Formation 

The paleoenvironmental interpretation of the deposits where the Mauriti Formation 
footprints are found is coalescent alluvial fans and a braided fluvial system with 
high energy (Fig. 6.10), formed in a hot and more arid climatic context (Ponte and 
Appi 1990; Carvalho et al. 1995; Batista et al. 2012; Carvalho et al  2024). The 
few isolated footprints and trackways in the Milagres and Mauriti ichnosites of the 
Mauriti Formation may reflect the time between periods of sediment accumulation 
and the nature of the substrate. It is possible that the high energy of the environment 
contexts, grain size, low water content, and lack of sediment plasticity did not allow 
the preservation of a large number of footprints, indicating a potential preservation 
bias (Carvalho et al. 1995, 2023, 2024).

6.5.2 The Aptian Rio da Batateira and Crato formations 

The Aptian records of dinosaur tracks in the Araripe Basin occurred in a moment 
of environmental changes of transitional siliciclastic to carbonate environments 
related to the deposition in an endorheic lake, also during a hot and arid climate. 
As demonstrated by Moratalla et al. (1995) Avanzini et al. (2000), Leonardi and 
Mietto (2000), Marty (2008), Santos et al. (2013), and Campos-Soto et al. (2017), 
carbonate environments are important for the preservation of fossil tracks. 

The Rio da Batateira sequence is interpreted as fluvial and clastic lake shore envi-
ronments, including floodplain areas of meandering rivers and low-energy lacus-
trine environments. The stratigraphic data interpretation shows that the interval was 
subject to tectonic control (Paula Freitas 2010; Rios-Netto and Regali 2007; Rios-
Netto et al. 2012). The low-energy lacustrine paleoenvironment was subjected to 
water level fluctuations and anoxic events (Assine et al. 2014). Although Varejão 
et al. (2021a) recorded a bayhead delta facies association deposited under a marine 
influence in the upper portion of the Rio da Batateira Formation, the dinosaur foot-
prints recorded in this unit occur in fine sandstones and shale successions associated 
with floodplain areas of meandering rivers and low-energy lakes, without evidence 
of a marine influence (Fig. 6.11).

The footprints of the Rio da Batateira Formation were produced in an exposed 
waterlogged substrate or in a flooded area, where the sediments’ liquefaction was 
possible. The evaluation of these tracks and their relationship with the substrate, allow 
the understanding of the deformation due to a foot impact, and the construction of a 
model for the cross-section track formation. They also show behavioral insights into 
the trackmaker biology, substrate properties, interaction among the producer, and 
environmental factors (Carvalho et al. 2019b; 2021a, b). The preservation of these 
dinosaur footprints is enhanced by specific environmental and more arid climatic
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Fig. 6.10 Reconstruction of 
the environmental scenery of 
the Mauriti Formation and 
the dinosaur trackmakers. 
Exposed channel bars of 
braided rivers in a context of 
arid climate allowed the 
preservation of theropod and 
ornithopod footprints (Art by 
Guilherme Gehr)

conditions, which may have a biogenic component associated. Rapid and significant 
sedimentation with the track coating favors the preservation, thus, footprints are 
most commonly preserved in environments with cyclic sedimentation (Carvalho 
et al. 2021a), including water-level fluctuations, as described for the Rio da Batateira 
Formation depositional environments. 

A key point for the final preservation of fossil vertebrate tracks in laminated sedi-
ments has been explained by the biostabilization process of the sediment surface 
by microbial mats (Carvalho et al. 2013). In the Lower Cretaceous Rio do Peixe 
Group in the Sousa Basin, also in the northeast of Brazil, microbial mats devel-
oped in the temporary and shallow lacustrine environments, during warm climate 
conditions. According to Carvalho et al. (2013), the footprint consolidation and its 
early lithification probably occurred due to the presence of microbial mats, which 
provided a more cohesive substrate, preventing the footprints from being eroded. The 
sediments were initially biostabilized by early cementation and the covering of the
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Fig. 6.11 Reconstruction of 
the environmental scenery of 
the Rio da Batateira 
Formation and the dinosaur 
trackmakers. Trampling by 
dinosaurs in a floodplain area 
of meandering rivers and 
lacustrine environments 
induced the deformation of 
the substrate. The climate 
was hot and more humid as 
observed through the 
palynological assemblages 
(Art by Guilherme Gehr)

microbial mats over the footprints. Subsequent successive floods and the influx of 
sediments allowed the preservation of a large number of layers with dinosaur foot-
prints. This same mechanism was discussed for the invertebrate trace fossil preserva-
tion in the Sousa Basin by Carvalho et al. (2017), giving light to the biostabilization 
process by microbial mats as one of the main responsible factors for the ichnofossils 
preservation. In this case, petrographic analysis showed microbially induced sedi-
mentary structures (MISS), such as small pits, bumps, and crinkles, associated with 
microbiolaminations and dispersed microbial filaments (Carvalho et al. 2017). 

Drawing a parallel with the similar proposed paleoenvironment for the Early 
Cretaceous Rio da Batateira Formation, it is plausible that these microbes also could 
have influenced the dinosaur footprints’ preservation. So far, there are records of 
algal laminations in the bituminous shales of the Fundão Member, established by 
Rios-Netto et al. (2012). In the 3-D casts of the Rio da Batateira dinosaur tracks, 
there is a section that shows evidence of digits, indicating the high plasticity of
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the substrate where the track was produced (Carvalho et al. 2021a). This ductility 
of the substrate may have been provided by the extracellular polymeric substance 
(EPS) secreted by the microbial mats, which gives a plastic nature to the sedimentary 
substrate through mucilage production. The presence of these microbial communities 
could be enhanced by the drier climatic context and the oscillatory character of the 
environment. A possible future perspective of paleoichnological studies in Brazil 
is the investigation of the microbial role in the fossilization of the Rio da Batateira 
dinosaur tracks, in the same way as described for the dinosaur tracks and invertebrate 
ichnofossils of the Sousa Basin. 

During the Aptian, alkaline lakes were one of the main depositional environments 
in the Araripe Basin, representing the Lagerstätte succession of the Crato Formation. 
Although there are records of marine facies association (Varejão et al. 2021a, b) 
the dinosaur footprints of the Crato Formation are recognized in deposits from the 
margins of alkaline and hypersaline lakes, where other exceptionally preserved fossils 
(Fig. 6.12) of vertebrates, invertebrates, plants, and even fungi are also found (Martill 
et al. 2007; Carvalho et al. 2021a; Dias et al. 2022, 2023). The tracks of the Crato 
Formation occur in the Três Irmãos Quarry, Nova Olinda County, which is mainly 
composed of micritic limestone, with levels of marls and fine-grained siliciclastic 
beds (Neumann and Cabrera 2002a, b). This Lagerstätte succession of the Crato 
Formation represents a hypersaline lacustrine environment based on the presence 
of evaporitic features (halite hoppers, gypsum beds, and isolated gypsum crystals), 
predominant terrestrial fossil fauna and flora content, absence of bioturbation, and 
presence of several structures that points to the microbial nature of the carbonates, 
such as peloids, amorphous organic matter, coccoid and filamentous cells embedded 
in EPS, and horizons of microbialites (Heimhofer et al. 2010; Catto et al. 2016; 
Warren et al. 2017; Varejão et al., 2019). The vertical passage from the underlying 
ephemeral lake and river-dominated delta facies association to the overlying hyper-
saline lacustrine deposits indicates an increase in the dry condition (Varejão et al. 
2021a).

In shallow, perennial, and closed lacustrine water bodies, as proposed for the 
Lagerstätte succession of the Crato Formation, the register of climate oscillations is 
expected. These climatic variations have been suggested by Neumann et al. (2003), 
Osés et al. (2017), Gomes et al. (2021), Guerra-Sommer et al. (2021), and Dias and 
Carvalho (2022). During drier periods, there is a greater proliferation of microbial 
mats and carbonate precipitation (Varejão et al. 2019, 2021a; Dias and Carvalho 2020, 
2022). In wetter periods, increased productivity in the water column can also generate 
thick carbonate layers, although without a significant influence of microbial mats on 
the genesis of these rocks (Heimhofer et al. 2010). Consequently, Dias and Carvalho 
(2022) and Dias et al. (2023) suggested a possible climate control influencing fossil 
preservation, which probably affected the record of the dinosaur footprints, both in 
the Aptian Rio da Batateira and Crato formations. 

Distinctly of the Rio da Batateira Formation, the microbial role in the carbonate 
genesis and fossilization process in the Crato Formation is already been well-
discussed (Catto et al. 2016; Osés et al.  2016, 2017; Warren et al.  2017; Varejão 
et al. 2019; Dias and Carvalho 2020, 2022; Iniesto et al. 2021; Prado et al. 2021;
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Fig. 6.12 The fossils variety from Crato Formation. a Outcrop of fine laminated carbonates where 
occur the exquisite Aptian fossils, Três Irmãos Quarry; b Insect of the Hemiptera order (UFRJ-
DG 1163 Ins); c Insect larvae of the Ephemeroptera order (UFRJ-DG 441 Ins); d Brachyphyllum 
obesum (UFRJ-DG 2424 Pb), a Coniferophyta; e Arachnid of the Araneae order (UFRJ-DG 42 
Ac); f Cratoavis cearensis (UFRJ-DG 31 Av), an Enantiornithes; g The fish Dastilbe crandalli 
(UFRJ-DG 1898 P). Scale bars: a 50 cm; b 1 cm;  c 2 mm; d 3 cm;  e 2 mm; f 2 cm;  g 4 cm

Dias et al. 2023). The high degree of morphological fidelity of fossils has been mainly 
attributed to the influence of microbial mats in the fossilization process, particularly 
in the covering and mineralization of organic remains when they reach the lacustrine 
substrate (Varejão et al. 2019; Dias and Carvalho 2020, 2022; Iniesto et al. 2021; 
Dias et al. 2023). 

The dinosaur footprints of the Crato Formation probably could be included in this 
fossilization scenario (Fig. 6.13), since this same mechanism of track preservation 
mediated by the microbial mats has already been described for the Sousa Basin 
(Carvalho et al. 2013). Just as a microbial mat enhances the chance of preservation



168 I. S. Carvalho et al.

by covering the carcass of an organism and creating physicochemical conditions 
conducive to the mineralization of organic remains (Dias et al. 2023), the coverage 
of a dinosaur track by the mats could favor exquisite preservation. 

In Vermelha Lagoon (Rio de Janeiro State), a hypersaline lagoon from the Quater-
nary of Brazil, there is extensive development of microbial mats, MISS (microbially 
induced sedimentary structures), and microbialites. On the margins of this envi-
ronment, desiccation tracks and wrinkle marks are associated with the preservation 
of wave marks and already lithified footprints of humans wearing sneakers. on the 
substrate (Guedes et al. 2022; Dias et al. 2023). During the Early Cretaceous in the 
Araripe Basin, the preservation of these dinosaur footprints occurs especially in the 
lacustrine margins, where there is more development of microbial mats, the same 
way observable for the Vermelha Lagoon. The sealing effect after covering the track, 
and the microbial sarcophagus created by the microorganisms, are key factors for the

Fig. 6.13 Reconstruction of 
the environmental scenery of 
the Crato Formation and the 
dinosaur trackmakers. The 
footprints are found in a 
context of carbonate 
environments related to the 
deposition in an endorheic 
lake, during a hot and arid 
climate. Episodes of more 
humid events allowed the 
increase of life diversity (Art 
by Guilherme Gehr) 
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preservation. This biogenic influence is directly correlated with environmental and 
climatic controls, with fossil preservation associated with shallow and hypersaline 
lacustrine environments, during more hot and arid contexts. 

According to Pérez-Lorente (2015), the bearing capacity in which a foot can 
sink into sediment occurs when the resistance to penetration of the foot is equal 
to the pressure applied, directly related to the substrate plasticity and consistency. 
Falkingham et al. (2011, 2014) discuss different substrate models on track formation 
potential. As the walls of some of the Crato Formation tracks are vertical, it is 
interpreted that the original substrate was soft, yet cohesive and competent. The foot 
could enter deeply, but the sediment stayed together leaving sharp walls. Otherwise, 
in the Rio da Batateira Formation footprints, the deformation can reach 100 cm depth 
as the result of the foot impact in a less firm substrate (Carvalho et al. 2021a). 

Besides the microbial component in the fossilization, other factors are also impor-
tant for the dinosaur track preservation in the fossil record. For Carvalho et al. (2021a), 
the abundance of vertebrate bioturbation depends upon rates of trampling, texture, 
and plasticity of the substrate, and also the subsequent permanent burial with a low 
reworking rate. The small grain size, consistency, plasticity, and water content of the 
sediments are determinants for the preservation of anatomical details. 

6.5.3 The Cenomanian Exu Formation 

The succession of the Exu Formation is interpreted as channel bars of ephemeral 
streams and floodplains under a more arid to semiarid climate during the Cenomanian. 
The sediments in the sand bars of the dry channel streams could be reworked by winds 
resulting in bimodal sandstone deposits (Carvalho et al. 2021b, 2022). The opening 
of the South Atlantic Ocean during the Cenomanian and the return to continental 
conditions in the Araripe Basin at this age were likely accompanied by an increase in 
aridity and average temperature of terrestrial ecosystems due to the continentalization 
process. 

In the Exu Formation (Barbalha ichnosite), the digit impressions or other morpho-
logical features of the footprints are not recognized. Probably, the substrate where 
the tracks were produced was not as plastic as the substrate with footprints in the 
Aptian Rio da Batateira and Crato formations. The absence of more delicate features 
of the Exu footprints could be a preservation bias due to the environmental conditions 
(Fig. 6.14).

6.6 Conclusions 

The dinosaur footprints found in the Araripe Basin are temporal markers of subaerial 
exposition surfaces throughout the basin, recording cyclical changes in the environ-
ments and climate. These footprints vary across four distinct lithostratigraphic units:
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Fig. 6.14 Reconstruction of 
the environmental scenery of 
the Exu Formation 
(Cenomanian) and the 
dinosaur trackmakers. 
Channel bars of ephemeral 
streams and sand sheets in 
floodplains were reworked 
by the feet load of dinosaurs. 
The climate during this 
moment was hot and dry 
with more humid events (Art 
by Guilherme Gehr)

Mauriti, Rio da Batateira, Crato, and Exu formations, each associated with different 
environmental settings. The tracks in the Mauriti Formation are located in alluvial 
fans and braided river deposits, formed during a hot and arid climate. This environ-
mental context limited the preservation of a larger number of footprints. In contrast, 
the Aptian dinosaur footprints of the Rio da Batateira and Crato Formations, which 
developed in fluvial-lacustrine settings under arid conditions, have better-preserved 
records. This preservation may have been influenced by the presence of microbial 
mats during the fossilization process. Other studies conducted with arthropod fossils 
from the Crato Formation highlight the significant role of these microbes in the 
coverage, sealing, and mineralization of organic remains. Extrapolating this mech-
anism for preserving dinosaur tracks offers valuable insights for future paleoich-
nological studies in the Araripe Basin. Finally, the dinoturbations observed in the 
Cenomanian Exu Formation do not exhibit the features seen in the Aptian record of
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the same basin. This discrepancy is likely due to preservation biases caused by the 
more unstable environment, similar to the Mauriti Formation. 
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Chapter 7 
Walking in the Gondwanic Floodplains 
of Rio do Peixe Basins 

Giuseppe Leonardi and Ismar de Souza Carvalho 

7.1 Introduction 

The Rio do Peixe basins are a set of four associated basins in the Northeastern region 
of Brazil: Sousa, Uiraúna-Brejo das Freiras (also known as Triunfo Basin), Pombal 
and Vertentes (or Icozinho Basin) (Fig. 7.1). The Sousa Basin comprises an area of 
~675 km2 (~60 km E-W, ~17 km N-S, E-W-oriented) and is located in the western 
part of the Paraíba State, in the counties of Aparecida, São João do Rio do Peixe, 
and Sousa (Fig. 7.2). This basin, when compared with the others, contains the largest 
number of dinosaur tracks.

The Triunfo Basin, is nearby to the Sousa Basin. It is located in the northwest 
of Paraíba State, in the counties of Uiraúna, Poço, Brejo das Freiras, Triunfo, and 
Santa Helena. It has a roughly triangular shape, NE-SW oriented, with an area of 
~450 km2. The Pombal Basin, the easternmost basin (NW–SE oriented), is a small 
one, with an area of about 81 km2 (~27 km long and ~3 km wide). There are few 
outcrops, and the rocks are generally excessively coarse-grained to preserve dinosaur 
footprints. The Vertentes Basin (or Icozinho) is a small, long and very narrow basin, 
NE-SW oriented, with an area of about 74 km2 (~37 km long and ~1 to 3 km wide). 
The total area of these four basins is estimated at ~1,280 km2 (Gonzaga et al. 2022).
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Fig. 7.1 Location map and geological framework of the Rio do Peixe basins area. a The intracra-
tonic sedimentary basins of Northeastern Brazil. b Location and geological map of the four Rio do 
Peixe basins, western Paraíba, Brazil (modified from Carvalho 2000a and Castro et al. 2007)
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Fig. 7.2 The Sousa Basin half-graben, from its northern margin. Overview of the Sousa Basin from 
Riachão dos Oliveira hill (a) and from Benção de Deus hill (b)

The origin of these basins is related to fault movements along preexisting struc-
tural trends of the Proterozoic basement during South and equatorial Atlantic Ocean 
opening (Ramos 2023). The Rio do Peixe basins, like many others in the region, 
are aborted rifts. In the clastic continental sediments, dinosaur footprints are the 
most abundant fossils. The main tetrapod ichnofauna comprises isolated footprints 
and trackways of large and small theropods, besides ornithopods, sauropods and 
ankylosaurs. Fish trails are found in the Sousa Basin (Muniz 1985; Leonardi and 
Muniz 1985). There are also invertebrate ichnofossils such as trails and burrows 
produced by arthropods and annelids (Fernandes and Carvalho 2001). The fossils 
are palynomorphs, plant fragments and some logs, ostracods, conchostracans and 
fish scales. Rare dinosaur bones (Ghilardi et al. 2014, 2016; Carvalho et al. 2017) 
and Crocodylomorpha bones (Carvalho and Nobre 2001) were also found. Sousa, 
Triunfo and Pombal basins comprise 42 ichnofossiliferous sites. The dinosaur ichno-
faunas present a same stratigraphic-time-paleogeographical context, and represent 
parts of a widespread megatracksite. In these basins was recorded a great number
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of individual dinosaur tracks. These represent the passage of at least 629 individ-
uals of the various dinosaur clades; there are also a large number of small chelonian 
half-swimming tracks and some Crocodylomorpha traces. 

The environmental setting at that time was influenced by the initial development 
of the Gondwana breakup, with an endemic biota living nearby ephemeral rivers 
and shallow lakes under hot climate conditions. These were preserved in alluvial 
fans, braided, meandering rivers and shallow lake deposits of Berriasian to lower 
Barremian age. 

After the first description of dinosaur tracks in the Sousa Basin (Moraes 1924) 
there was an increase of new ichnosites (Leonardi 2021) and, consequently, a rele-
vant literature on the subject was produced (Leonardi 1979a, b, 1980a, b, 1981, 
1984a, b, 1985, 1987a, b, 1989, 1994, 2008, 2011, 2021; Leonardi et al. 1987a, b, c; 
Leonardi and Carvalho 2000c, 2002, 2021; Godoy and Leonardi 1985; Campos et al. 
2015; Carvalho  1989, 1996, 2000a, 2000b, 2004a, 2004b; Carvalho et al. 1993a, b; 
Carvalho et al. 2013a, b, c, 2016, 2017; Carvalho and Fernandes 1992; Carvalho and 
Leonardi 1992, 2007, 2021, 2023; Santos and Santos 1987a, 1987b, 1989; Carvalho  
and Carvalho 1990; Fernandes and Carvalho 2001, 2007; Leonardi and Santos 2006; 
Santos et al. 2016; Siqueira et al. 2011; Viana et al. 1993). 

7.2 Geological Context 

The Rio do Peixe basins are four sedimentary basins (Fig. 7.1): Sousa, Triunfo, 
Pombal and Vertentes located at the western extremity of Paraíba State and in 
the southeastern Ceará State, in the Proterozoic Borborema Province, Northeastern 
Brazil. They largely correspond to the current catchment area of the Peixe River, a 
tributary of the Piranhas River (Fig. 7.3).

These basins are located in the context of the Interior Rift System of Northeast 
Brazil. They are rift basins that evolved as a consequence of the Cretaceous Gond-
wana break-up, alongside earlier structural trends of the basement, during the South 
Atlantic Ocean opening (Matos 1992; Rapozo et al. 2021; Matos et al. 2021). As 
a result, there was the origin of several sedimentary basins throughout the normal 
and transcurrent fault movements within the Precambrian basement (Nogueira et al. 
2015). 

During the first rifting phase, the two major faults bordering the basins (Portalegre 
Fault and Malta Fault) caused normal displacement (Pichel et al. 2022) and left-
lateral transtension on an E-W-striking major fault (Rapozo et al. 2019). The fault 
patterns controlled the E-W oriented Sousa half-graben and the SW oriented Triunfo, 
Vertentes and Pombal half-grabens. In the interior of these basins there are many 
minor faults, generally parallel to the major alignments, mainly to the Portalegre 
Fault (Araújo et al. 2019; Torabi et al. 2021; Nicchio et al. 2022; Oliveira et al. 2022; 
Pichel et al. 2022; Freitas et al. 2023). During the Lower Cretaceous (Berriasian to 
Hauterivian), under the same tectonic stress pattern, the basinal areas increased and 
during the last tectonic stage (early Barremian), there was a change in the tectonic
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Fig. 7.3 The SousaBasin  and the  Peixe River.  a The Peixe River with its ciliary forest and its valley, 
corresponding in large part to the Sousa Basin, with the savannah and caatinga environments, partly 
cultivated with cotton; b The Peixe River during a long dry season, when the best outcrops of the 
Sousa Formation become visible

pattern, and sediment accumulation began to decline (Carvalho and Leonardi 2021). 
Later, in the post-rift phase, there would have been a reversal: the Rio do Peixe basins 
were subjected to a horizontal compression (ESE-WNW) from the Late Cretaceous 
onwards (Nogueira et al. 2015; Lima et al. 2017; Barbosa et al. 2021; Bezerra et al. 
2017, 2023; Maciel et al. 2018). 

The time interval of sedimentation, based on ostracods and palynomorphs, is char-
acteristic of Berriasian to early Barremian stages (Early Cretaceous; Carvalho 2000a, 
2004a; Lourenço et al. 2021). However, beneath the Lower Cretaceous succession 
(Fig. 7.4a, b), there are Lower Devonian (Eolochkovian–?Eopraguian) rocks identi-
fied through palynological analysis from drillings by Petrobras (Roesner et al. 2011). 
These sediments are the Santa Helena Group, divided in the Pilões Formation and 
Triunfo formations (Silva et al. 2014), indicating a multi-phase history of these basins 
(Silva et al. 2014; Carvalho and Leonardi 2021; Pichel et al. 2022). After the short 
Devonian deposition, during the Cretaceous, the Sousa Basin accumulated more 
than 2 km thick in the depocenter, and Triunfo Basin is a 2.5–3 km thick half-graben
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Fig. 7.4 a Antenor Navarro Formation succession at Serrote do Letreiro; b Molds of large mud 
craks from the Sousa Formation; c The Moura Formation, a Cenozoic and Recent deposits of loose 
sediments. All images from the Sousa Basin 

(Córdoba et al. 2007; Carvalho and Leonardi 2021). On the contrary, during the later 
phases of Cenozoic reactivation of the marginal coastal basins of Pernambuco and 
Paraíba (Neogene-Quaternary; Lima et al. 2017), it seems that there was not expres-
sive reactivation of the fault system in the Rio do Peixe basins, aspect that is also 
confirmed by a low sediment supply (Moura Formation; Fig. 7.4c). 

So, after an initial Paleozoic phase, these basins were filled with Lower Creta-
ceous reddish and greenish shales, mudstones, siltstones and sandstones of the Rio do 
Peixe Group (Fig. 7.5). This unit comprises three formations. The Antenor Navarro 
Formation on the border of these basins is interpreted as coalescing alluvial fans and 
braided fluvial systems. The Sousa Formation, which is essentially microclastic (fine



7 Walking in the Gondwanic Floodplains of Rio do Peixe Basins 185

Fig. 7.5 Rio do Peixe Basins stratigraphical chart, and the lithostratigraphic units with dinosaur 
footprints. Abbreviations: PI: Pilões Formation; TR: Triunfo Formation (Devonian Group Santa 
Helena); AN: Antenor Navarro Formation; SOU: Sousa Formation; RP: Rio Piranhas Formation. 
Modified from Rapozo et al. (2021) 

sandstones, siltstones, argillites, marls), indicates lacustrine, swampy, and mean-
dering fluvial environments with microbial influence (Carvalho et al. 2013a). The 
Rio Piranhas Formation is interpreted as alluvial fans and temporary and braided 
rivers. 

These deposits demonstrate the direct control of sedimentation by the tectonic 
activity (Souza et al. 2021; Oliveira et al. 2022). Deposition along the faulted borders 
of the basins are alluvial fans, changing to a braided fluvial system more distally. A 
meandering fluvial system with a wide floodplain was established in the central region 
of the basins, where perennial and/or temporary lakes were established (Carvalho 
2000a; 2004a; Leonardi and Carvalho 1992, 2021; Lourenço 2021). 

The mudstones, siltstones and black shales of the Sousa Formation (locality Sítio 
Saguim, Sousa Basin) are prospective for hydrocarbon generation (low liquid hydro-
carbon generation potential but a moderate gas potential, ANP - Agência Nacional 
de Petróleo 2008; Iemini  2009). However, a validation to hydrocarbon exploration 
in the basin is so far expected (Carvalho et al. 2013c; Muniz et al. 2017; Gonzaga 
et al. 2022; Fig.  7.6).
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Fig. 7.6 Oil exudation from Sousa formation at Sítio Saguim, interior of the Sousa Basin 

7.3 Footprints: Diversity and Paleobiological Interpretation 

The Sousa and Triunfo basins have a paleontological significance due to the abun-
dance of dinosaur ichnofaunas that are part of an extensive Early Cretaceous mega-
tracksite (Viana et al. 1993; Leonardi and Carvalho 2000, 2002) established during 
the break-up of Gondwana and the early stages of the South Atlantic opening. After 
48 years of field work, 42 tracksites (26 in Sousa Formation; 11 in Antenor Navarro 
Formation; 5 in Rio Piranhas Formation) and about 96 tracks-bearing levels of the 
Rio do Peixe basins (74 in Sousa Formation; 17 in Antenor Navarro Formation; 5 
in Rio Piranhas Formation) were recognized, mainly in the Sousa Basin (Leonardi 
2021; Leonardi and Carvalho 2021).
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These tracksites and the correspondent ichnofossiliferous levels contain track-
ways or isolated footprints assigned to different clades of dinosaurs: 395 large 
theropods (Fig. 7.7a); 31 smaller theropods with a third toe substantially longer 
than the other two toes; five additional, different kinds of small theropods; 16 
medium-size theropods from Serrote do Letreiro (for a total of about 447 individual 
theropods); about 90 sauropods (Fig. 7.7b); 30 graviportal ornithopods (among them 
four quadrupedal and one sub-quadrupedal trackways, along with some isolated 
footprints, probably pertaining also to quadrupedal animals) (Fig. 7.7c); six small 
ornithopods; one ankylosaur (Fig. 7.7d); one small quadrupedal Thyreophora (alto-
gether 36 ornithopods, 38 ornithischians); and at least 53 indeterminate dinosaur 
tracks. In total, the number of identifiable individual dinosaurs is 576, and the 
total number of individual dinosaurs, including the indeterminate tracks is at least 
629; there are, in addition, some representatives of the mesofauna. There are also 
four possible dinosaur tail impressions (Leonardi and Carvalho 2000, 2021). These 
numerical data are updated with respect to those previously provided (Leonardi and 
Carvalho 2021) both for the increase of the discovered locations and for a revision 
of some classification cases.

The meso-ichnofauna, very rare in these basins, is represented by just one set 
of batrachopodid prints; some crocodilian traces (tracks and a body imprint in the 
mudstone) (Fig. 7.8a); one isolated lacertoid footprint (Fig. 7.8b); and a very large 
number of small chelonian swimming tracks (Leonardi and Carvalho 2000, 2021; 
Fig. 7.8c). The absence, for now, of pterosaur tracks is odd. The mammals seem to 
have left no traces, although an occurrence (of poor quality), cannot be excluded, 
with an eventual trackway at Riacho do Cazé (Sousa County), Antenor Navarro 
Formation, Sousa Basin (Fig. 7.8d). The detailed description and classification of 
the ichnofossiliferous sites of Sousa and Triunfo basins (and the few material found 
in the two smaller basins of Pombal and Vertentes) is presented by Leonardi and 
Carvalho (2021). Some new ichnosites (Serrote do Mocó Fig. 7.9a and Araçá-Rio 
Novo, Fig. 7.9b, Leonardi 2021; Pereiros, Carvalho and Leonardi 2023 (Fig. 7.9c); 
Engenho Novo 3rd, Leonardi 2021; (Fig. 7.9d) and the new site Buscapé, Fazenda 
Abóbora (unpublished) were recently discovered in the Sousa Basin, Sousa Forma-
tion. Table 7.1 summarizes the data from these ichnosites and Table 7.2 gives the 
geographical coordinates, to aid the tracksites location.

7.3.1 Fossil Tracks Complete or Replace Bones in Dinosaur 
Documentation 

One of the advantages of fossil tracks is that in many paleoenvironments and conti-
nental stratigraphic units, where body fossils are poor or absent, good quality tracks 
complement or sometimes completely replace the documentation on the existence 
of dinosaurs and other animals. This is for example the case of the western Paraíba
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Fig. 7.7 The Rio do Peixe Basins contain trackways or isolated footprints assigned to different 
clades of dinosaurs: a Theropods; b Sauropods. Photo by Franco Capone; c Ornithopods; d Cast of 
an ankylosaurian hand-foot set (SOES 7), from Serrote do Pimenta, Antenor Navarro Formation. 
Photo by M. de Fátima C. F. dos Santos. Graphic scales: a = 10 cm; b = the diameter of the 
footprints of sauropods in excavation is 40 to 80 cm; c = 8 cm;  d = 5 cm

State, but also other areas of the Brazilian northeast: the Mesozoic skeletons and 
bones are rare, with the exception of the Araripe Basin. 

The fossil tracks present a true bonanza in the Rio do Peixe basins and espe-
cially in the Sousa Basin, with more than 600 dinosaurs recorded by their foot-
prints in such a small area, and a very high diversity index. The body fossils, on 
the contrary, are reduced so far to a few bones corresponding to two individuals 
of titanosaurids (Ghilardi et al. 2014, 2016; Carvalho et al. 2017) and one or two 
notosuchian crocodyliformes (Carvalho and Nobre 2001). In the Sousa Basin, even 
if only a titanosaurid fibula had been found so far (Ghilardi et al. 2014, 2016), from
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Fig. 7.8 Non-dinosaur tracks in the Sousa Basin. a Crocodilian body imprint at Tapera, Sousa 
Formation; b The single lacertoid footprint in the Rio do Peixe Basins, from Serrote do Pimenta 
ichnosite, Antenor Navarro Formation; c Footprints of swimming chelonians and a theropod, from 
the Piau locality, Sousa Formation; d A possible occurrence of mammal tracks, from Riacho do 
Cazé, Sousa County, Antenor Navarro Formation. Graphic scales: a = people as a graphic scale; B 
= 2 cm;  C = 20 cm; D = 10 cm

the fossil footprints, we can estimate the existence of about 608 dinosaur individ-
uals of distinct clades. In the Triunfo Basin, the unique formally described dinosaur 
species is the sauropod Triunfosaurus leonardii Carvalho et al. 2017 (Fig. 7.10), 
despite the presence of theropod footprints. Among the tracks from these basins it 
is possible to estimate at least 447 individual theropods divided into large predators, 
mostly abelisaurids, but without excluding spinosaurs (340 individuals, represented 
by at least five different forms; Fig. 7.11); 31 small theropods, probably noasaurids 
or velocisaurids (Fig. 7.12), with long and slender feet, producing tracks similar to 
those of the Grallator-Eubrontes plexus of the Laurasian continents; 16 medium-
sized theropod individuals, different, but attributable to the same plexus and forming 
a single population (Fig. 7.13); not to mention the about 60 swimming theropods, 
that one cannot classify correctly. The sauropods are less frequent in these forma-
tions. In the Sousa Basin their fossil footprints indicate 67 individuals divided into 
five great groups that marched in herds, with evident gregariousness; and 23 isolated 
individual tracks (about 90 sauropods, all together). Sauropod tracks are often of
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Fig. 7.9 Tracksites from the Sousa Basin. a Serrote do Mocó, with sauropod tracks; Photo by Luiz 
Carlos Gomes da Silva; b Theropod tracks and ripple marks at Araçá Rio Novo; c The Pereiros 
ichnosite, with three theropod trackways; d Engenho Novo 3rd, with several theropod and sauropod 
tracks. Graphic scales: a = 15 cm; b = 10 cm; c = Ismar Carvalho as reference scale; d = 20 cm

poor quality, and typically very large (Fig. 7.14a). The largest, with a diameter of 
120 cm, is located in the locality Piau-Caiçara.

The ornithopods were rarer, and their trackways are partially bipedal (Fig. 7.14b), 
partly quadruped (Fig. 7.14c–d) and partly semi-quadruped. Most are isolated and 
therefore not gregarious individuals, usually graviportal animals of large dimensions 
(about 30 individuals). The main ones have been assigned to three ichnogenera 
(Leonardi 1979a, 1984a), attributed to iguanodontids, probably of African affinity, 
without excluding other types. There are also some specimens of small ornithopod 
tracks (about 6 specimens). One of the most important discoveries in the Sousa Basin 
was that of a hand-foot pair of an ankylosaurian, probably a nodosaurid (SOES 
7; Leonardi 1984a, 1994). The discovery of it in 1979 was the first indication of 
the presence of ankylosaurs in South America (Fig. 7.15a–b). Another particularly 
interesting specimen is a rather enigmatic short trackway, of difficult interpretation 
because it is an underprint. It is the track SOPP 15 (Leonardi 1994, 58; Leonardi and 
Carvalho 2021), of four hand-foot sets, found in the locality Passagem das Pedras, 
level 1, perhaps a Thyreophoroidea trackmaker. Together they are 38 Ornithischia 
(6.60% of the total individual tracks classifiable); and 537 Saurischia (93.23% of the 
total individual tracks classifiable).
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Table 7.2 The ichnosites of the Rio do Peixe Basins and geographic coordinates, datum WGS 84 
(Siqueira et al. 2011; Leonardi and Carvalho 2021). The coordinates were collected at different 
times, over 48 years, using different methods and devices (or maps) 

Code Ichnosite Basin Formation Coordinates 

SOAB Abreu Sousa Sousa 06°44'25''S/ 
38°19'00''W 

ANAC Araçá de Cima Sousa Sousa 06°44.995S/ 
38°24.673W 

ANAN Araçás Rio Novo Sousa Sousa 06º44'41.2''S/ 
38º25'08.6''W 

ANBD Barragem do Domício Sousa Sousa 06°44.165 S/ 
38°26.288W 

SOBP Baixio do Padre Sousa Sousa 06°45.113 S/ 
38°19.993W 

SOBU Buscapé, ex Abobora Sousa Sousa – 

ANEN1 Engenho Novo1 Sousa Sousa 06º42'51.7''S/ 
38º24'43.0''W 

ANEN2 Engenho Novo2 Sousa Sousa 06º42'51.7''S/ 
38º24'43.0''W 

ANEN3 Engenho Novo3 Sousa Sousa 06º42.896S/ 
38º24.752''W 

ANJU Juazeirinho Sousa Sousa 06°44.685 S/ 
38°25.144W 

SOMA Matadouro Sousa Sousa 06°45'06.93''S/ 
38°13'41.72''W 

SOPP Passagem das Pedras Sousa Sousa 06°44'00.51''S/ 
38°15'41.57''W 

SOPE Pedregulho Sousa Sousa 06º45'22.6''S/ 
38º20'56.7''W 

SOCA Piau-Caiçara Sousa Sousa 06º44'24.9''S/ 
38º19'54.9''W 

SOPU Piau 2 Sousa Sousa 06°43'52''S/ 
38°19'37''W 

SOPI Piedade Sousa Sousa 06º44'55.4''S/ 
38º20'56.5''W 

SOPM Poço do Motor Sousa Sousa 06º44'18.139''S/ 
38º15'28.947''W 

SOPV Poço da Volta Sousa Sousa 06º45'20.10''S/ 
38º24'43.9''W 

ANSM Serrote do Mocó Sousa Sousa 06º41.7965/ 
38º24.974''W 

SJSP Sítio Pereiros Sousa Sousa 06°47'18.71''S/ 
38°29'11.81''W 

SOSA Sítio Saguim Sousa Sousa 06º43'24.3''S/38º 
20'15.5''W

(continued)
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Table 7.2 (continued)

Code Ichnosite Basin Formation Coordinates

APTA Tapera Sousa Sousa 06°46.188 S/38° 
06.695W 

APVR1 Varzea dos Ramos 1 Sousa Sousa 06º46'09.0''S/38º 
06'40.5''W 

APVR2 Varzea dos Ramos 2 Sousa Sousa 06°46'38''S/ 
38°05'42''W 

APVR3 Varzea dos Ramos 3 Sousa Sousa 06°46'38''S/ 
38°06'15''W 

ANZO Zoador Sousa Sousa 06°45.301S/38 
24.595W 

UIAR Arapuã Triunfo Ant.Navarro 06°34'45''S/ 
38°25'40''W 

ANAR Aroeira Sousa Ant.Navarro 06°41'44''S/ 
38°22'06''W 

UIBA Baleia Triunfo Ant.Navarro 06°12'10''S/ 
38°25'13''W 

POGR Grotão Pombal Ant.Navarro 06°45'32''S/ 
37°54'40''W 

UIPO Pocinho Triunfo Ant.Navarro 06°35'13''S/ 
38°25'15''W 

SORC Riacho do Cazé Sousa Ant.Navarro 06º43.153''S/ 
38º13.14.548W 

SORP Riacho dos Oliveira Sousa Ant.Navarro 06°43.347''S/ 
38°14.636W 

SOSL Serrote do Letreiro Sousa Ant.Navarro 06°41'36.89''S/ 
38°18'29.72''W 

SOES Serrote do Pimenta Sousa Ant.Navarro 06º43'18.8''S/ 
38º11'44.1''W 

SOFB Floresta dos Borba Sousa Ant.Navarro 06°41'055''S/ 
38°20'733''W 

ANCA Cabra Assada Sousa Ant.Navarro 06º49'53.8''S/38º 
23'50.3''W 

SOCV Curral Velho Sousa Rio Piranhas 06º49'47.474''S/ 
38º12'9.812''W 

SOLF 1 Lagoa do Forno Sousa Rio Piranhas 06°48.066 S/ 
38°10.039W 

SOLF 2 Lagoa do Forno Sousa Rio Piranhas 06°48.563 S/ 
38°10.492W

(continued)



196 G. Leonardi and I. S. Carvalho

Table 7.2 (continued)

Code Ichnosite Basin Formation Coordinates

SOMD Mãe d’Água Sousa Rio Piranhas 06º48'58.5''S/ 
38º12'41.5''W 

SOFP Fazenda Paraíso Sousa Rio Piranhas 06º48.793S/ 
38º09.857W

Fig. 7.10 The sauropod 
Triunfosaurus leonardii 
Carvalho, Salgado, Lindoso, 
Araújo Jr., Nogueira & 
Agnelo, 2017 from the 
Triunfo Basin. In these 
basins the fossil bone are 
very rare. Graphic scale = 
1 m. Art by Deverson Silva

Based on the numerical data, according to their characteristics (Leonardi 2021) 
there are 128 trackways assigned to herbivorous dinosaurs (22.26% of individual 
trackways and isolated footprints) and 447 trackways attributed to theropods (77.74% 
of the identifiable individual trackways and isolated footprints). The ratio of herbivo-
rous to theropod individual trackways in this ichnofauna is 1: 3.47. However, probably 
not all theropods were carnivorous and predatory; some were necrophagous; other 
forms of that clade could be herbivorous or omnivorous rather than strictly carniv-
orous. There were also piscivorous and insectivorous animals. This is particularly 
likely for small to midsize theropods. 

There are at least 99 quadrupedal trackways (about 90 sauropods, and nine 
ornithischians, correspondent to about seven quadrupedal ornithopods and two 
quadrupedal thyreophorans; 17.22% of the identifiable individual trackways and 
isolated footprints) and 476 bipedal trackways (82.78% of the identifiable individual 
tracks). The ratio of quadrupedal to bipedal tracks is 1: 4.81. 

The relationship between youth and adult tracks is also interesting. In the Rio do 
Peixe basins, the former tracks are very rare, consequently, little can be said about 
the age-class structure of the trackmakers. The only footprint in Sousa Basin that 
is, almost certainly, that of a juvenile is an isolated tridactyl track on Passagem das 
Pedras site, which is the smallest dinosaur track discovered so far in these basins 
(footprint length = 5.6 cm). There are no other very small dinosaur individuals 
(hind-foot prints shorter than 12 cm). This phenomenon might indicate very heavy
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Fig. 7.11 Diversity of tracks among the 447 individual theropods found in the Sousa Basin, Sousa 
Formation. a A trackway of Moraesichnium barberenae Leonardi 1979a, b b A theropod track 
from Caiçara-Piau locality; c Theropod footprint from Sítio Saguim; d An anomalous theropod 
footprint, pertaining to a normal theropod trackway, but that seems to belong to an ornithopod. It is 
a footprint with infilling material more coarse from the adjacent top layer. Graphic scale: a = the 
average stride is 197.2 cm; b = the length of the footprint is 20 cm; c and d = 5 cm

mortality on the part of very young individuals (Leonardi 1981). It is also possible 
to be an artifact of preservation, where small sized dinosaurs were not heavy enough 
to leave footprints because of the substrate firmness. 

In a total of 42 ichnosites in the Rio do Peixe basins, against what one would 
expect in theory, those in which meat eaters outnumber plant eaters (31 sites out of 
42; that is 73.81% of all sites) are more abundant than those in which the opposite 
occurs, (7 sites, 16.67%). There are three sites where the parity between carnivores
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Fig. 7.12 A noasaurid track, 
9 cm long, from the 
Caiçara-Piau locality, Sousa 
Formation, SOCA 1321. 
Photo by M. de Fátima C.F.  
dos Santos. Graphic scale = 
1.3 cm

and herbivores is reached (7.14%) and a site with a track not classifiable (2.38%). 
Besides, ichnosites in which there are only theropod tracks, are rather numerous in 
the Rio do Peixe basins. They are 19, out of 42 ichnosites, and it corresponds to the 
45.24% out of all 42 ichnosites. This high number of sites with apparent exclusive 
presence of theropods is well explained by Pérez-Lorente (2015, p. 325): “Because 
theropod footprints are the most abundant, so are outcrops with theropod footprints”. 

In addition to these 19 ichnosites where the theropods are represented only by 
tracks (45.24% out of 42 sites), there are: 1 ichnosite with tracks of theropods, 
sauropods, ornithopods and one quadrupedal Thyreophora (four clades, 2.38%); 1 
ichnosite with tracks of theropods, ornithopods and one quadrupedal Thyreophora 
(three clades, 2.38%); 7 ichnosites with tracks of theropods, sauropods, ornithopods 
(three clades, 16.67%); 4 ichnosites with tracks of theropods and sauropods (two 
clades, 9.52%); 5 ichnosites with tracks of theropods and ornithopods (two clades, 
11.90%); 3 sites with only sauropod tracks (7.14%); 1 site with only ornithopod 
tracks (2.38%); 1 site with only large unclassifiable herbivore tracks (2.38%). There 
are also few sites where rare tracks of animals of the mesofauna are also recorded, 
they are 4 (9.52% of all the 42 sites). These last localities are Caiçara-Piau, Riacho 
do Cazé, Serrote do Pimenta, and Tapera.
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Fig. 7.13 An original drawing, by G. Leonardi, of the bedding surface of the Antenor Navarro 
Formation, at the Serrote do Letreiro tracksite, Sousa Basin. All individuals probably belonged to 
the same population. Fossil footprints are associated with later prehistoric petroglyphs

7.3.2 Behavior of the Rio do Peixe Dinosaurs 

The study of the fossil tracks also is the most important and unparalleled (Gatesy 
and Ellis 2016) method for making inferences about the behavior of the track-
makers. Seventy-eight trackways were sufficiently long and conveniently measur-
able, permitted estimation of trackmaker speeds. The result was clear: the speed of
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Fig. 7.14 Tracks of plant eating dinosaurs. a Manus-pes pair of a sauropod from Engenho Novo 
ichnosite; São João do Rio do Peixe County, Sousa Formation, Sousa Basin; b A trackway of a  
bipedal graviportal ornithopod from Baixio do Padre, Sousa County, Sousa Formation, Sousa Basin. 
It pertain to the ichnogenus Caririchnium, but the gait is herein bipedal; c The main trackway 
of the Passagem das Pedras ichnosite, Sousaichnium pricei, a semi-bipedal iguanodontid. Sousa 
County, Sousa Formation, Sousa Basin; d Holotype of Caririchnium magnificum, pertaining to a 
graviportal quadrupedal ornithopod. Serrote do Letreiro, Sousa County, Antenor Navarro Formation, 
Sousa Basin. Graphic scales: a= 15 cm; b, c and d: the average widths of the hind-footprints are 
respectively: 51.2; 35.7: 47.8 cm

fifty-nine of these trackways (75.64% of the sample) was estimated between 3 and 
7 km/h. The trackmakers were, therefore, traveling with a walking gait. Seven track-
ways show a slower estimated speed (≤2 km/h; 8.98%); four of these are sauropods, 
three are ornithopods. Twelve trackways (15.38% of the sample) point to a speed 
between 8 and 23 km/h. Of these, eight (10.25%) have calculated speeds of 8–13 km/ 
h; another four (5.12%) are distributed over a range between 13 and 23 km/h. These
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Fig. 7.15 a–b The discovery (1979) of this hand-foot set attributed to an ankylosaurian, probably 
a nodosaurid, at the Serrote do Pimenta tracksite (SOES 7; Leonardi 1984a; 1994), was the first 
evidence of ankylosaurs in South America. Sousa Basin, Antenor Navarro Formation. Graphic scale 
= 10 cm

last four trackways, all belonging to medium to large theropods (Fig. 7.16a), corre-
sponds to the fastest runners of the Rio do Peixe ichnofauna (Leonardi et al. 1987a, 
b, c). It is important to be cautious when estimating or calculating speed from fossil 
track records (Lockley and Meyer 1999), despite the fact that we can calculate that 
dinosaurs in the Rio do Peixe basins in general kept a walking pace, and only rarely 
took a running gait. The quadrupeds always moved slowly or very slowly. The bipeds, 
including theropods, did not run very often or very quickly; the calculated maximum 
speed that was found in the Rio do Peixe Basins is about 23 km/h (Leonardi et al. 
1987a, b, c; Fig.  7.16b). This situation is common for non-avian dinosaurs (Leonardi 
and Mietto 2000). A similar, more recent statement on low dinosaur speeds can be 
found, for example, in Xing et al. (2014).

The general evidence that dinosaurs have a high degree of metabolism is not 
doubted here. However, it is not so evidently reinforced by the known ichnological 
record, and it ought to be better examined on the basis of many detailed, extensive 
and statistic studies on their trackways (Leonardi et al. 1987a, b, c; Molnar and 
Farlow 1990), rather than on the basis of some isolated, biased, and/or unchecked 
information. When the latter occurs, it guides the huge racing dinosaurs of Bakker 
(1986a, b) and Paul (1987a, b). 

The bearings or directions of the footprints from the Rio do Peixe Group of the 
Sousa Basin (Leonardi and Carvalho 2021), based on 386 individual trackways, point 
to a rather tetramodal model, with two main modes in the NE and SW quadrants, 
and two secondary modes in the other two quadrants. There seem, then, to be four 
associations of dinosaurs, moving along preferential paths, on different levels, and 
in diverse times and occasions. As earlier described for the locality Piau-Caiçara’ 
tracks (Godoy and Leonardi 1985), and at least for the Sousa Basin tracks in general, 
most of these tracks are parallel or nearly parallel to the ridges of the ripple marks. 
These crests, in turn, indicate the dominant orientation of the water’s edge, which
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Fig. 7.16 On the behavior of dinosaur. a This very straight and narrow trackway corresponds to 
one of the fastest runners of the Rio do Peixe ichnofauna: a large theropod track (SOES 1) at Serrote 
do Pimenta (Antenor Navarro Formation), with about 22 km/h. Graphic scale = 20 cm; b Another 
theropod track (SOPP 3) at Passagem das Pedras (Sousa Formation), with an estimated speed of 
23 km/h. b Photograph by Franco Capone

is often parallel to the regional faults that gave rise to the Rio do Peixe basins. It 
is clear, therefore, that the directions of movements were strongly conditioned by 
the local and regional morphology of the territory, in particular by the bodies of 
water and, indirectly, by the regional tectonic patterns (Godoy and Leonardi 1985; 
Leonardi 1989; Leonardi and Carvalho 2021). It would be possible that they could 
easily reach Africa afoot (nearly 450 km from Sousa), by following one of these 
paths, specifically along the Patos-Garoua fault system, possibly reaching the current 
territory of Cameroon. 

All tracks in the Rio do Peixe basins, including those of sauropods, are rather 
narrow, attesting to an entirely erect position of the trackmaker. All sauropods were 
clearly quadrupeds. Theropods, both large and small, were all bipedal (Molnar and 
Farlow 1990), with very narrow trackways, in contrast to the old model of large 
theropods giving a Cossack dance show (Molnar and Farlow 1990; Wade 1989). 
Ornithopods, in the Sousa Basin, were bipeds, quadrupeds or, in one case, semi-
quadrupeds. In some cases, the tail mark is perhaps preserved in the Sousa Basin. 
The rarity of tail drags or marks is habitual for dinosaurs. It is evident that most of 
the dinosaurs in the Rio do Peixe basins, including both bipedal and quadruped ones, 
kept their tail away from touching the ground. 

Dinosaur tracks of the Rio do Peixe basins produced by bipeds (probably 476 
individual tracks, or ~82.78% of the 575 classified dinosaur tracks) heavily surpass
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those of quadrupeds (about 99 individuals, or ~17.22% of the serviceable sample). 
The ratio of biped tracks to quadruped tracks is thus 4.81: 1. We stated earlier that 
walking gaits surpass almost entirely running gaits. There are cases of semi-bipedal or 
semi-quadruped animals; especially ornithopods. No hopping, galloping or sprawling 
(except for a single lizard-like footprint) gaits are represented at these basins. A 
particular case is that of the trackway SOPP 1, of an iguanodontid, quadruped or 
semi quadruped in a different way, because in its very long trackway it leaned slightly 
on the ground with the right hand only, and not with the left. It can be interpreted 
as a taphonomic aspect or even an abnormal behavior. A rather usual manner of 
gait in the Sousa Basin (~10.43%) is that of dinosaurs, mainly theropods, which, 
swimming (Fig. 7.17a) and perhaps searching for fish or other food in shallow water, 
pushed with their feet on the bottom of a shallow lake bed, and produced what are 
called swimming-tracks or more correctly, half-swimming-tracks (Leonardi 1987). 
Altogether, there are about 59 individual theropod half-swimming tracks and a single 
probable ornithopod half-swimming track in these basins (~60 cases vs. 1).

Except for sauropods, which almost always lived in herds, most dinosaurs in 
the Rio do Peixe basins were lonely animals. The gregarious behavior is attested 
by clusters of sauropod tracks of at least 7–20 individuals (Fig. 7.17b; Leonardi 
1989, 1994; Carvalho  2000b; Leonardi and Santos 2006); the number of animals in 
these herds could have been higher, because some tracks were probably destroyed 
by erosion, and some have yet to be found out and/or excavated. Theropods and 
ornithopods, instead, ordinarily traveled as individual animals. There are, however, 
three exceptions among the theropods: the population of small and medium-sized 
theropods (~16 individuals at Serrote do Letreiro; Fig. 7.17c); the assemblage of 
some long-heeled theropods of the ichnogenus Moraesichnium Leonardi 1979a, b 
at Passagem das Pedras (Fig. 7.17d); and perhaps the nearly 30 theropods of Piau-
Caiçara farm on the “rainy” level 13/2. 

7.4 Paleogeographic Distribution of the Footprints 

The South American (and, in general, Gondwanan) dinosaurs are very different 
from those of the northern continents. Some integration and coexistence between 
the dinosaur species of the two supercontinents, Gondwana and Laurasia, occurred 
much later with the phenomenon that we could name: Dinosaur American Biotic 
Interchange (DABI), which occurred towards the end of the Cretaceous, due to the 
junction between the two American continents, a phenomenon analogous with the 
GABI, the Great American Biotic Interchange (Cione et al. 2015). 

The diversity of the dinosaur faunas between Northern and Southern America 
depends on the probable total biogeographic isolation of South American and, more 
generally, Gondwanan faunas, from those of boreal continents (Laurasia) during 
Middle and Late Jurassic and almost all of the Cretaceous, a typical case of endemism 
(Bonaparte 1986, 2007). There is, instead, a notable affinity between South Amer-
ican dinosaur faunas and those of the other Gondwanan plates: Africa, Madagascar,
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Fig. 7.17 a Typical imprint of a swimming theropod, pushing on the bottom with the toetips. 
Piau-Caiçara locality, Sousa County, Sousa Basin, Sousa Formation; b The gregarious behavior 
is attested by clusters of sauropod tracks of at least 7–20 individuals, which proceed in parallel 
herd, here preserved on the bottom of the rivulet Riacho do Pique, at Serrote do Letreiro, Sousa 
County. Antenor Navarro Formation, Sousa Basin. Photo by Franco Capone; c Gregarious (rare) 
behavior of a theropod population in Serrote do Letreiro tracksite, Sousa County. Antenor Navarro 
Formation, Sousa Basin; d An assemblage of several long-heeled theropods of the ichnogenus 
Moraesichnium at Passagem das Pedras, Sousa County. Sousa Formation, Sousa Basin. Photograph 
by Franco Capone. Graphic scale: a = 4 cm;  c = 20 cm
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India, Antarctica, and Australia. This applies even more to the present territory of 
Northeastern Brazil, which in the Early Cretaceous was probably still attached, at 
least partially, to Africa, but detached from the rest of what would later have been 
South America. 

Indeed, the dinosaur fauna of the oldest portion of the Early Cretaceous (Berriasian 
to lower Barremian, Rio da Serra-Aratu stages) represented by their tracks in the Rio 
do Peixe basins, as well as the few other representatives of the meso-ichnofauna, 
had to be a very special fauna. As a matter, it ought to be more similar to that of 
West and Central Africa, rather than that of other regions of present-day Brazil and 
South America, since the easternmost area of the Brazilian territory (Rio Grande do 
Norte, Paraíba, at least part of the Ceará and Pernambuco states) was isolated by an 
epicontinental sea during the Early Cretaceous. 

The landscape of the mentioned basins, during Early Cretaceous, were mainly 
flat surfaces, elongated narrow valleys, between chains of low mountains of mostly 
Proterozoic rocks, with a possible Paleozoic or Early Mesozoic cover, now disap-
peared. Low mountain or hill ranges, flanked the sinking basin. One side of the 
valley, controlled by a fault, usually a strike-slip fault, was steeper, rockier, and 
consequently less covered by vegetation. The other side could be less inclined and 
with a less inclined slope. The mountains on the sides of the basins could be covered 
on the top by woods or coniferous groves, mostly Araucariaceae and with all an 
undergrowth of tree ferns, Cycadoidea, like Podozamites and Conipherophyta, like 
Otozamites. Along the borders of the valleys ran ephemeral streams, generally of 
low flow, at the base on alluvial fans of Precambrian polymictic material, partially 
reworked, consisting of gravel and coarse immature sands. These torrential streams 
often originated anastomosed ephemeral channels in the largest basins. 

The fauna could pass from the upland areas in the lowland prairies and vice-versa, 
both to graze, if they were plant-eaters, both to reach water points, easier to gush 
than in the highlands. If they were meat-eaters, just in those points that somehow 
served as a necessary gathering point of the fauna, especially in the seasons and other 
periods of dryness and aridity. 

The sediments, transported by water, became gradually finer: coarse sand, fine-
grained sand, silt, and finally mud. The interior of these basins, especially in those 
of greater area, were often abundant in water and low vegetation. At the depocenter 
there were lakes, shallow and ephemeral, with rather warm and alkaline waters. 

7.5 Paleoenvironmental and Paleoclimatic Contexts 

At the beginning of the Mesozoic, the southern hemisphere had a warm and arid 
climate. This is clearly observed by the generalized presence of wind deposits along 
the Brazilian and African intracratonic basins (Lima 1983). The connection of South 
America and Africa as a single continental block did not allow for greater humidity in 
what was then the continental hinterland. A greater degree of humidity was allowed 
due the fragmentation of the Gondwana supercontinent and the creation of a lake
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and river systems along the rift valleys. This suggests a link between climate change 
and the tectonic events that led to the separation of South-American and African 
continents. Although low, this humidity contributed to increased local rainfall and 
led to the growth of abundant vegetation in the region (Lima 1983; Carvalho  2000a). 

During the Early Cretaceous, warm climate was widespread. According to Petri 
(1983, 1998) and Lima (1983), in the beginning of Cretaceous the climate was more 
humid in regions located to the south of the tropical domain (the Recôncavo-Tucano-
Jatobá basins). Despite the tropical domain’s hotter and drier climate, the existence 
of fresh-water lakes is suggested by invertebrate fossils, as the large conchostracans 
Palaeolimnadiopsis reali in some lacustrine facies of the Sousa Basin that locally 
provided more humid conditions (Carvalho 1989; Carvalho and Carvalho 1990). 

At that time, the southern continents were still amalgamated in the Gondwana 
supercontinent, and the Atlantic Ocean was in its initial developing phase. In north-
eastern Brazil, across an area of hundreds of square kilometers, ephemeral rivers and 
shallow lakes constituted important environments for an abundant endemic biota in 
many basins (Lima Filho et al. 1999; Mabesoone et al. 1979, 2000). The rarity of 
levels with rain-drop marks (only one recognized in the Sousa Basin, none in the 
others; Fig. 7.18), the scarcity of plant remains, logs and fossils suggest a relatively 
arid to semi-arid climate. 

Another aspect is that dinosaur footprints are so strongly distributed in the Sousa 
Basin, compared to other basins (Fig. 7.19). Although sedimentological and tapho-
nomic aspects may well control this disparity, it also could depend on different 
microclimates, at least due the presence or not of lakes and the pH of their waters. 
One might think that the valley of the Sousa Basin was similar to, in the present time,

Fig. 7.18 The stratigraphic level 13/2 at the Piau-Caiçara tracksite, Sousa Formation, Sousa Basin. 
The upper surface of the mudstone layer was covered by footprints of about thirty theropods of the 
same population, and the small craters produced by the rain, fall after the passage of that pack of 
meat-eater dinosaurs. Here, in this representative specimen, a footprint and some other theropod 
digits. Photo by Ragnhild Borgomanero. The width of the track is 14 cm 
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Fig. 7.19 Environmental 
reconstruction of the Sousa 
Basin (Antenor Navarro 
Formation) in the Early 
Cretaceous 
(Berriasian-Berramian). One 
ankylosaurian and 
titanosaurians crossing a 
fluvial fan deposit on the 
North margin of the basin. In 
the background to the left 
(South), behind the two 
titanosaurids, one notices the 
straight line of Proterozoic 
hills that depend on the 
Malta fault (E-W). Art by 
Guilherme Gehr 

the great oasis of Faiyum in the Libyan-Nubian desert, located in Egypt, southwest 
of Cairo, so fertile and luxuriant, compared to the situation of aridity surrounding, 
and also so rich in crocodiles. 

7.6 Conclusions 

The four Rio do Peixe basins, and notably the Sousa Basin, present an impressive 
amount of Early Cretaceous dinosaur tracks in sediments dated from the Berriasian 
to the lower Barremian. Data on the presence of different groups of dinosaurs and 
other coeval animals, their correlations, the numerical value and percentage of their 
presence in the overall sample were herein provided. Several aspects of their behavior 
have been deduced: speeds, manners of gaits, directions, posture, individual and
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social behavior. The importance of quantifying the ichnological material, by means 
of a large number of data, and to its statistical study, has also been underlined. 

The presence of dinosaur tracks in the Rio do Peixe basins induced the scientific 
tourism, which enabled job positions allowing the economic flourishment of the 
region. It would however be important and urgent to carry out a new vulnerability 
diagnosis of these ichnosites and the establishment of proposals for geoheritage 
protection. 
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Chapter 8 
Tracking Dinosaurs During 
the Equatorial and South Atlantic 
Opening 

Giuseppe Leonardi, Maria de Fátima C. F. dos Santos, 
and Fernando Henrique de Souza Barbosa 

8.1 Introduction 

The breaking of Gondwana continent and the subsequent opening of the equato-
rial and southern Atlantic Ocean during the Cretaceous resulted in a number of 
marginal and intracratonic basins, due to the fault reactivation of the Precambrian 
shield. This great tectonic event gave origin to a number of marginal sedimentary 
basins as well as several small intracratonic basins in the northeastern region of 
Brazil, notably in the states of Ceará, Rio Grande do Norte, Paraíba, Pernambuco, 
Sergipe, Alagoas and Bahia (Fig. 8.1). The sediments of these basins reveal with 
some frequency the presence of dinosaurs in the continent that was emerging, espe-
cially through the record that comes from the discovery of their fossil tracks. These 
basins assemble the paleoceanographic, paleoclimatic, and biotic record changes 
during the late Barremian–Albian (Luft-Souza et al. 2021). 

Apart from the well-known larger sedimentary basins, these smaller basins 
have aroused great interest among geoscientists, particularly in the field of tetrapod 
Ichnology, with a focus on dinosaurs. Some of these, located in the interior of
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◄Fig. 8.1 Geological map of the Brazilian northeastern sedimentary basins with the main occur-
rences of dinosaur tracks. Abbreviations: AL, Alagoas; BA, Bahía; CE, Ceará; PB, Paraíba; PE, 
Pernambuco; PI, Piauí; RN, Rio Grande do Norte; SE, Sergipe 

Northeastern Brazil, presents a large number of fossil specimens and diversity have 
yielded interesting ichnosites (Leonardi and Muniz 1985; Leonardi and Spezza-
monte 1994; Carvalho et al. 2020). In southeastern Ceará there is another group 
of small and medium-sized basins, controlled by the normal and transcurrent faults 
of the shear alignments Portalegre (~SW-NE) and Patos and Pernambuco (~W-E): 
Iguatu; Malhada Vermelha (also known as Palestina, or Igarói); Lima Campos; and 
Icó basins. The area of the Iguatu Basin is approximately 780 km2, the Malhada 
Vermelha Basin, 65 km2, Lima Campos Basin, 105 km2 and Icó Basin, 120 km2. 
To this assembly of basins, it can be joined the Rio dos Bastiões Basin (southern 
Ceará, about 40 km SW of Iguatu), which occur in a SW-NE small and narrow elon-
gated depression. Fossil tracks of dinosaurs have been found in two of these basins: 
Lima Campos and Malhada Vermelha. The small basin of Icozinho (or Vertentes) is 
associated rather to the basins of the Rio do Peixe (Carvalho and Leonardi 1992). 
Little to the east of the basins is found another assemblage of small basins: Lavras 
de Mangabeira; Mangabeira; Iborepi in the municipality of Lavras da Mangabeira, 
which area does not exceed 63 km2.

Other basins with dinosaur tracks include the Potiguar Basin, covering approxi-
matelly an area of 48,000 km2. It extends beyond the offshore, which is about 21,500 
km2, for about 200 km in the continental shelf to the north, beneath the ocean (Pessoa 
Neto et al. 2007). Additionally, there is the aborted rift of Jatobá, Tucano and Recôn-
cavo with 500 km length and an average width of about 70 km (Dantas et al. 2019) 
and the narrow SW-NE marginal basin (300 km long and about 30 km wide) of 
Sergipe-Alagoas (Carvalho and Souza-Lima 2023). 

8.2 Geological Context 

During the Cretaceous South America and Africa breakup, the northern segment of 
the Atlantic Rift System was formed by the East Brazilian Rift System (EBRIS) 
(Chang et al. 1992). 

The small intracratonic basins of the central region of northeastern Brazil (Fig. 8.2) 
are tectonic depressions mainly filled by Lower Cretaceous sediments, showing 
great similarities in their origin, shape and evolution (Ponte 1992; Mabesoone 1994; 
Valença et al. 2003). They resulted from mostly normal and transcurrent faults, 
(Carvalho and Melo 2012). They are mostly located in the western region of Paraíba 
and Rio Grande do Norte states, and in the southern part of the Ceará State. They 
present a great variety of invertebrates and vertebrates ichnofossils and, especially, 
dinosaur tracks (Leonardi 1979, 1989, 1994; Carvalho  1989; Carvalho et al. 1993a, b, 
1994; Leonardi and Spezzamonte 1994), which demonstrates that despite the rarity 
of skeletons in this area, the dinosaur faunas of Brazil were rich and diverse.
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Fig. 8.2 Simplified stratigraphic sections and lithostratigraphic units with dinosaur footprints of 
the Potiguar Basin, Lima Campos Basin, Recôncavo Basin, Sergipe-Alagoas Basin, and Tucano-
Jatobá Basin. Abbreviations: AG, Água Grande Formation; ALG, Alagamar Formation; Ali, Aliança 
Formation; Ba, Barremian; Be, Berriasian; BIT, Barra de Itiúba Formation; Bo, Boipeba Member; 
Bu, Buracica Stage; Can, Candeias Formation; Cpg, Capianga Member; CSE, Coq. Seco Forma-
tion; FDE, Feliz Deserto Formation; Fm, Formation (litostratigraphic unit); Gr, Group (litostrati-
graphic unit); Ha, Hauterivian; Ita, Itaparica Formation; JD, Jandaíra Formation; Ju, Jurassic; LC, 
Lima Campos Formation; Ma, million years; Mb, Member (litostratigraphic unit); MCH, Morro do 
Chaves Formation; Mr, Maracangalha Formation; MSC, Massacará Group, MV, Malhada Vermelha 
Formation; PCD, Pescada Formation; PD, Pendência Formation; Pe, Perucaba Group; Pt-Ca, 
Pitanga-Caruaçu Member; QBD, Quebradas Formation; QX, Quixoá Formation; Se, Sergi Forma-
tion; SESM; Sesmaria Member; SSB; São Sebastião Formation; St. Amr, Santo Amaro Group; Ti, 
Tithonian; Va, Valanginian (modified from Costa et al. 2007; Pessoa-Neto et al. 2007)
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The Iguatu, Malhada Vermelha, Lima Campos and Icó grabens or semi-grabens, 
are neighboring basins, strongly controlled by the tectonic structures of the Protero-
zoic basement, related to the ~SW-NE Portalegre shear zone. In these basins, 
clastic rocks are distributed mainly nearside the shearbundles that limit and control 
the basins. In more central areas, or away from active faults during sedimenta-
tion, occur fine sandstones, siltstones, shales, mudstones, limestones and marls 
(Carvalho 2000a, b). The lithostratigraphy of these basins consist in the Iguatu 
Group (about 3,000 m thick), with the Quixoá (coarse sandstones with conglom-
erate intercalations); Malhada Vermelha (fine sandstones, shales and marls) and 
Lima Campos (conglomeratic sandstones and fine sandstones) formations. Srivas-
tava (1990) suggested that the lithostratigraphic units of these basins should follow 
the same terminology of the Rio do Peixe basins (Antenor Navarro, Sousa and 
Rio Piranhas formations), due the lithological and paleoenvironmental similarities 
(Carvalho 2000a, b). 

The small basins of Lavras de Mangabeira, Mangabeira and Iborepi show a E-
W orientation, controlled by the Portalegre shear zone. The basal sediments are 
the Antenor Navarro Formation, with coarse sandstones, breccia and polymictic 
conglomerates. There are also (in the locality Melancias) siltstones and mudstones, 
reddish color, similar to the deposits of the Sousa Formation (Carvalho 1989, 1993). 
Another small basin is the Padre Marcos, located in Cariri Valley rift system, in 
the Padre Marcos County, Piauí State, between the Parnaíba and Araripe basins. 
There are polymictic conglomerates and coarse sandstones, near the faulted margins. 
In the depocenter there are fine greenish sandstones, siltstones and shales. The 
lithostratigraphic context is similar to that of the Rio do Peixe basins. 

The Potiguar Basin is one of the basins that is located in the Equatorial Margin. 
It was created during the Early Cretaceous, with the reactivation of the Precambrian 
basement shear zones, that culminated in the opening of the Atlantic Ocean (Pessoa 
Neto et al. 2007; Araújo et al.  2023). The sedimentary sequence of the Potiguar 
Basin is composed of more than 9 km thick and fills asymmetric grabens during the 
South American/Africa breakup (Pessoa Neto et al. 2007; Araújo et al. 2023). It is 
represented by three supersequences: (i) Rift Supersequence (Rift I e Rift II; Early 
Cretaceous); (ii) Pos-rift Supersequence (Alagoas Stage); and (iii) Drift Superse-
quence (Albian to Recent). The fossil record of the Potiguar Basin is predominantly 
composed by marine invertebrates and vertebrates associated with the Jandaíra and 
Açu formations (Cassab 2003; Pereira et al. 2018, 2020a, b; Veiga et al. 2019; Dantas 
et al. 2021). 

The long, aborted rift system Recôncavo-Tucano-Jatobá resulted from the crustal 
extension during the fragmentation of the supercontinent Gondwana. Apart from a 
Silurian-Devonian sequence, there is a Pre-rift Supersequence (Aliança and Sergi 
formations), interpreted as fluvial-eolian and lacustrine (Dom João stage; Tithonian, 
Upper Jurassic); and the Rift Supersequence (Candeias, São Sebastião and Salvador 
formations) dated as Berriasian-Barremian up to early Aptian, Lower Cretaceous 
(Silva et al. 2007; Costa et al. 2007).
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The Sergipe-Alagoas marginal basin is oriented SW-NE and together with the 
Potiguar Basin, are the only Brazilian Cretaceous basins with a complete sedimen-
tary record since the Upper Jurassic Pre-rift phase to the uppermost drift Cretaceous 
marine sediments (Cassab and Santos 1994). It is remarkable for its fossil-rich units, 
with several macrofossil and microfossil groups, and sedimentary sequences repre-
senting all phases encompassed by the Gondwana break-up and South Atlantic Ocean 
opening (Luft-Souza et al. 2021). 

8.3 Footprints: Diversity and Paleobiological Interpretation 

8.3.1 Iguatu, Malhada Vermelha, Lima Campos and Icó 
Basins 

In the Malhada Vermelha Basin, in the Cabeça de Negro locality (Leonardi and 
Spezzamonte 1994; 06° 21' 52'' S; 39° 04' 17'' W) in a remarkable series of outcrops 
and loose slabs, which represents a transition between the Quixoá and Malhada 
Vermelha formations, one footprint was found (ORCN 1; Figs. 8.3 and 8.4). It was 
attributed to a medium-sized theropod.

In the Lima Campos Basin are found two ichnosites. The first one is the richest 
locality with dinosaur trackways in this region, and is located at the county of Orós, 
in the São Romão farm, 3 km east of lgarói, along the road linking this town to 
the CE-113 highway (6° 21' 52'' S; 39° 01' 18'' W). The track-bearing surface is 
located in the basal portion of the Quixoá (or Antenor Navarro) Formation. It is a 15 
m2 area and it shows nine dinosaur short trackways, all bipedal, and some isolated 
footprints, belonging to bipedal dinosaurs; there is a total of fourteen individuals. 
This association is constituted of fourteen bipedal animals, including about seven 
individuals and three different forms of theropods (ORSR 1, ORSR 2, ORSR 3, 
ORSR 4, ORSR 11, ORSR 12, ORSR 14; Figs. 8.3 and 8.4) and perhaps three 
individuals and two different forms of medium-sized ornithopods (ORSR 8, ORSR 
9 and ORSR 13). The small tracks (ORSR 5, ORSR 6 and ORSR 7) are too small 
to be classifiable in this brittle material. The track ORSR 10 in not classifiable too. 
This classification is different from the one given in the work cited above (Leonardi 
and Spezzamonte 1994). 

Most of the footprints are well discernible, some are very deep, with high displace-
ment rims in front or behind, with some sliding marks. The trackways and separated 
footprints show the directions subparallel to SW-NE (n = 8) or the contrary (n = 3), 
parallel to that of the main Portalegre fault direction; only two tracks (ORSR 1 and 
ORSR 4) cross the others in a SE-NW direction. Particularly interesting are the track-
ways pertaining to three tiny sized dinosaurs of the same kind, which are very rare 
in the Rio do Peixe Group basins and in almost all of the northern and northeastern 
Brazil (Leonardi and Carvalho 2021). In these two trackways (ORSR 5 and ORSR 
6), the footprints have an average length of 100 mm and 110 mm, respectively; and
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Fig. 8.3 Map of the theropods and ornithopods trackways in a rocky pavement of the Quixoá 
Formation (Lower Cretaceous, Lima Campos Basin) at the tracksite of São Romão, Orós, State of 
Ceará (from Leonardi and Spezzamonte 1994)

a width of 85 and 102 mm, respectively. These dimensions are similar to these of the 
isolated footprint ORSR 7. Another isolated track was found in the tracksite of the 
Tijuca Farm, Orós County, 0.5 km W of the highway CE-113, N of the town of Lima 
Campos. On the coarse sandstones of the Quixoá (or Antenor Navarro) Formation, 
there is an isolated and incomplete footprint (LCTI 1), rather shallow but very well 
imprinted in an isolated flat boulder, and attributed to a large theropod (Fig. 8.4).
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Fig. 8.4 The same dinosaur trackways of the Fig. 8.3 and those of the locality Tijuca (LCTI 1), and 
of the site Cabeça de Negro in the Malhada Vermelha Basin (ORCN 1), both attributed to theropods 
(from Leonardi and Spezzamonte 1994)

8.3.2 The Mangabeira and Padre Marcos basins 

In the small basins of Lavras de Mangabeira, Mangabeira and Iborepi, the ichno-
logical record is represented by dinosaur footprints of poor-quality, in the bed 
of the Rosario Creek (unpublished material), vertical pedotubules and horizontal 
and vertical invertebrate tubes, possibly assigned to Skolithos Haldemann, 1840 
(Carvalho and Fernandes 1992). The latter were on the edge of a rural road, 
which leads to Quintaús, on an outcrop of red-coloured sandstone, which seems 
to correspond to a hard ground. 

In the Padre Marcos Basin, fossil tracks of dinosaurs were identified in the Sítio 
tracksite (Juazeiro do Quitó, Jaicós county), and attributed to theropods (Carvalho 
and Viana 1996; Carvalho  2001).
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8.3.3 Potiguar Basin 

Dinosaur skeletal remains were found at the western end of the Potiguar Basin, in 
the municipality of Quixeré, Ceará State, in Açu Formation (Albian-Cenomanian). 
These materials come from the Açu-4 informal stratigraphic unity (Cenomanian). 
They were classified as carcharodontosaurids, abelisaurids and sauropods (Santos 
et al. 2005; Pereira et al. 2020a, b). Later on, an association of dinosaur tracks has 
been described in this basin, also in the Açu Formation (Leonardi et al. 2021). These 
footprints are located at the site known as Pingos Farm (5°34'10 S, 37°02'20''W, 
datum WGS 84; Fig. 8.5). This ichnofauna includes four individual tracks. Three of 
them (AÇPI 1, AÇPI 2 and AÇPI 3) are assigned to large sauropod hind-footprints. 
The AÇPI 2 and AÇPI 3 are poor quality footprints, with no anatomical details, 
exhibiting only a clear, although low, displacement rim, and an oval outline. AÇPI 
1 (Fig. 8.5c), on the other hand, is a track deeply imprinted on a sandstone cracked 
surface, featuring a large and high displacement rim, particularly proeminent in 
front and some morphological details. The footprint is wider in the front portion and 
narrower in the rear, and it has the characteristic outline of a bell; the heel outline 
is roundish; on the front margin, one can observe at least four claw impressions. 
Including the displacement rims, the track measures about 100 cm in width and 
140 cm in lenght, a probable large titanosaurid trackmaker. This footprint is part 
of a short trackway with at least three hind footprints, while the footprints of the 
manus, as in the first one that was reported, are probably covered by the displacement 
rim of the pedes. Several other sauropod tracks, probably of the same population, 
were discovered on the last visit (July 2021) and deserve a further detailed study. A 
preliminary analysis indicates that the sauropod trackway seems, in this way, to be 
associated with the same kind of titanosaurid track found there (AÇPI 1). It is not 
uncommon when it comes to sauropods, animals that frequently lived and moved 
gregariously in herds. This apparent appearing and disappearing of tracks probably 
depends on the fact that there is an accelerated weathering, with loss of structures and 
outlines. The last footprint (AÇPI 4) is attributed to an ornithopod. It is a very deep, 
left hind-footprint, longer than it is wide, with three roundish and short hooves and 
a rounded (monolobed) interdigital pad (Fig. 8.5d). The footprint presents a large 
displacement rim, 15–20 cm wide. The hooves have a blunted distal end, and they are 
short, especially toes II and IV, which are much shorter than toe III. The III digit is 
spatulate. Digit II is separated from the heel pad by a rather typical notch or incision. 
Based on comparisons with other ornithopod tracks, it is possible that it could have 
been imprinted by some kind of iguanodontid.
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Fig. 8.5 The Pingos tracksite in the Potiguar Basin and its surroundings. A a The plateau of 
sandstone Açu 3, on which lies the ichnosite of Pingos; b The cave, called Gruta dos Pingos, is a  
good reference mark to find the rocky pavement with the dinosaur tracks, which is located about 
fifteen meters above the cavern. Photograph by Leonardo Menezes; c A fine and large sauropod 
hind-footprint (AÇPI 1), with a large and high displacement rim, especially large in front of the 
track; in a trackway of three consecutive footprints; d Deep ornithopod footprint (AÇPI 4), probably 
a left one. Scale bar: 15 cm (in c) and 20 cm (in d) 

8.3.4 Tucano and Recôncavo Rift and Sergipe-Alagoas Basin 

There is an uncertain theropod footprint at an outcrop of the Aliança Formation 
(Tithonian, Lower Jurassic) in the locality of Penedo, Bahia (Tucano North Basin), 
near the right margin of the São Francisco River. 

In the Recôncavo Basin several load- and fluidization structures were found in 
deposits of the Dom João Stage (Upper Jurassic, middle and late Tithonian), which 
have been interpreted as dinoturbation processes (Carvalho and Borghi 2008). In the
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Fig. 8.6 a Cross section of dinosaur deep footprints presenting fragmentation of layers partially 
solidified, partly with fluidization in the internal surrounding matrix; b Outcrop of the Maceió 
Formation (Sergipe-Alagoas Basin) where cross section tracks are found in coarse grained 
sandstones. Scale bars: 5 cm. Photographs by Ismar de Souza Carvalho 

Aliança Formation (Boipeba Member), they observed load structures with a more 
pronounced concavity at the base. In the Sergi Formation (Uppermost Jurassic), 
Carvalho and Borghi (2008) discovered similar deformation structures, with larger 
dimensions, possessing verticalized walls, in the shape of a tube, denoting a defor-
mation of up to 30 cm in lamination depth (Fig. 8.6). These footprints are inter-
preted as load and fluidization structures that could result from the weight exerted 
by the autopods of large tetrapods in unconsolidated sediments. As the structures 
are vertical, sectioning the lamination, the details of the trackmaker autopodia are 
not visible. These can then be classified only as specimens of the order Dinosauria, 
without a more detailed classification. 

Recently, Dantas et al. (2019) preliminarily communicate the finding of three 
isolated dinosaur footprints, on the surface of layers of the Lower Cretaceous São 
Sebastião Formation, from the North Tucano Basin, ichnosite of Canindé de São 
Francisco, State of Sergipe, not far from the right bank of the São Francisco River. 
They are isolated tridactyl footprints, well preserved. All three are assigned to small 
theropods; they are accompanied by bird tracks, and therefore by avian-theropods 
(Dantas, MAT, personal information). It seems likely that the age of those footprints is 
early Aptian. Another three dinosaur tracks were discovered by Carvalho and Souza-
Lima (2023) in the Sergipe-Alagoas Basin. These tracks were found in sandstones of 
the Maceió Formation, in cross-section on seashore bars, on the beach of Bicingui, 
in the municipality of Japaratinga (State of Alagoas), in the NE extremity of the 
Sergipe-Alagoas Basin. In these sandstones occur phenomena of fluidizations and 
apparent load-casts, which are interpreted by the aforementioned authors and by 
us as resulting surely as a load-cast, but this was produced by a load exerted by 
the autopods of large and heavy vertebrates. These are features of dinoturbation, 
preserved in Aptian sandstones and they comprise absolutely the first evidence of 
dinosaurs in the Sergipe-Alagoas Basin. These tracks reach 20 cm of maximum width
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and an approximate 46 cm in length. The cross-section footprints do not allow to 
easily recognize their trackmaker in detail. On the other hand, during the Albian, the 
only animals with feet of this size were, as far as is known, dinosaurs, and probably 
non-theropod dinosaurs. 

8.4 Paleogeographical Distribution of the Footprints 

Between the Late Jurassic and Early Cretaceous, the Gondwana supercontinent began 
to break apart. By the Early Jurassic, the extant South American continent had sepa-
reted from Florida and the Gulf area, and the Central Atlantic Ocean was initiating its 
opening. However, it is from the Callovian (late Middle Jurassic; Matos 1992) that the 
rupture between the Western Gondwana, now corresponding to South America, and 
the eastern part becomes more evident, affecting the Brazilian Northeastern region. 
The Atlantic equatorial margin had settled. Now, a complex of tensions and stresses 
lead to crustal stretch, rifting and the break of West and East Gondwana, resulting 
in the opening of the Central and South Atlantic (Cainelli and Mohriak 1999). This 
complex of tensions opened a deep rift valley in the Recôncavo Basin and the Tucano 
and Jatobá basins during the Dom João Stage (Upper Jurassic) (Carvalho and Borghi 
2008). Around the same time, in the Araripe Basin there was the deposition of the 
Brejo Santo and Missão Velha formations (Assine 2007) and in the Sergipe-Alagoas 
Basin the Serraria and Bananeiras formations (Campos Neto et al. 2007). 

Later, in the Potiguar Basin at the beginning of the Cretaceous, the Pendência, 
Pescada and Alagamar formations (Rio da Serra-Aratu stages; late Berriasian-
Aptian) record the rift conditions (Assine 2007; Pessoa Neto et al. 2007). Also, at 
the beginning of the Cretaceous (Berriasian), throughout the northeast opened other 
small, narrow and elongated basins, from SW to NE, almost parallel to the current 
Atlantic coastline, and more rarely have a W-E orientation. Although the names of 
the lithostratigraphic units changes, they generally exhibit similar sequences of sedi-
ments. The Rio do Peixe Group corresponds to these basins with its three formations: 
Antenor Navarro, Sousa and Rio Piranhas. 

Later began the opening of the marginal basins of Paraíba-Pernambuco during 
Aptian (Córdoba et al. 2007). During the Albian-Cenomanian begin the deposition 
of the psammitic Açu Formation in the Potiguar Basin. The dinosaur track assemblage 
at Fazenda Pingos probably needs to be located in the informal subunit Açu 3 (Early 
Cenomanian, Vasconcelos et al. 1990; Leonardi et al. 2021). The lithostratigraphic 
unit of Açu Formation represents the initial phase of transgression during the Early 
Cretaceous resulting in vertical stacking of river systems. This includes braided 
systems at the base, transitioning to coarse meanders, fine meanders and estuarine at 
the top. This deposition is linked to the drift phase of the Potiguar Basin evolution, 
before the implementation of a tide-dominated carbonate platform/ramp (Jandaíra 
Formation; Turonian-Campanian; Pessoa-Neto et al. 2007).
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There is the presence of different groups of dinosaur in almost all of these basins, 
as well as in the surrounding territory (Fig. 8.7). The tectonic events, from Callo-
vian to the late Lower Cretaceous, ends with the definitive opening of the central 
and southern Atlantic Ocean, and with the beginning of the oceanic crust, approxi-
mately 110 million years ago, at the Albian-Cenomanian. The origin and evolution 
of the South Atlantic was a long and complex process, during which the rocks of the 
basement of Borborema and Benin-Nigeria provinces acted as an “obstacle” to the 
complete South Atlantic opening. Seawater initially invaded the continental areas 
as an epicontinental sea in the northeastern region of Brazil crust (Carvalho 2022). 
The ocean floor spreading was a diachronic phenomenon, in three distinct moments 
(approximately 130 Ma, 113 Ma and 110 Ma) starting from south to north. Only after 
the end of the Early Cretaceous (about 110 million years) did a continuous crust of 
oceanic nature be established (Darros de Matos et al. 2021a, b; Carvalho  2022). The 
South American continent was thus separated and individualized from Africa. So, 
the late Aptian crustal separation led to the evolution of the Brazilian Atlantic margin 
(Chang et al. 1992). Its fauna from this moment on, had to evolve separately from 
that of Africa.

8.5 Paleoenvironmental and Paleoclimatic Contexts 

The ancient landscape in today’s Brazilian northeast, particularly in the area between 
the Potiguar and Araripe basins, was mostly mountainous and arid at the beginning 
of the Cretaceous. It comprised mountains and low ranges of rocky hills, primarely 
formed from Proterozoic fault rises and eroded over an extended period. The large 
plateaus, such as the distinctive Chapada do Araripe and others had not yet formed. It 
was difficult to humidity reach the middle of an immense megacontinent, resulting in 
rare rainy seasons. Several formations from the Early Cretaceous indicate the pres-
ence of aeolian sands and silts. Bedding surfaces with impressions of raindrops are 
rare. Plant remains are not abundant in the Cretaceous formations of the region, espe-
cially when compared with the underlying Jurassic formations. The overall climate 
was likely warm and arid, prevailing greenhouse conditions (Luft-Souza et al. 2021). 
The rivers, at the bottom of the valleys, were stony streams, usually dry, flowing only 
after the rare flash floods and during the limited time of the seasonal rains. 

If vegetation was indeed scarce, the fauna was undoubtedly influenced by this, 
and in regions lacking humid microenviroments with lakes, it could not have be 
abundant. In addition, the fauna had to consist of animals adapted to life in an arid or 
semi-arid environment. The absence (so far at least) of both fossil bones or footprints 
in about half of the basins mentioned in this chapter, seems to confirm this general 
picture of the environment, landscape and climate. 

However, with the beginning of the crust stretching and the consequent break-up 
of the region, the landscape favored the formation of fluvial valleys, lakes, and more 
widespread the presence of small and sometimes large lakes (Petri 1983). This change
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Fig. 8.7 Environmental 
reconstruction of life in the 
intracratonic basins of the 
Brazilian northeast during 
the Early Cretaceous. A herd 
of sauropods passes from 
one basin to another, over the 
crest of a horst. On the shore 
there is a herd of 
ouranosaurid-like 
ornithopods, and a few 
abelisaurids at rest. At the 
base of the mountains to the 
west runs a transcurrent 
fault. Art by Guilherme Gehr

is particularly evident in the case of the Sousa Basin, as well as in the Potiguar, Lima 
Campos, and Malhada Vermelha basins. 

As the climate became progressively wetter and less arid with the Gondwana 
breakup, small rift basins with a lacustrine and fluvial evironments were settled. 
This is concurrent with the progressive separation of South America and Africa. The 
presence of freshwater lakes with alkaline pH, high temperature and high amount of 
nutrients is shown in many basins by the numerous specimens of the giant conchos-
tracean Paleolimnadiopsis reali (Carvalho and Srivastava 1996). Consequently, the 
environment became suitable for the life and concentration of tetrapods and espe-
cially dinosaurs, from diverse clades. Other minor evidences of these faunas, espe-
cially dinosaurian, are also found in the areas of Mangabeira, Padre Marcos and Rio 
Nazaré basins. 

The final rupture of Gondwana and the beginning of spreading of an oceanic crust 
barred further passageway for non-flying continental tetrapods, and even contributed
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to the total change of marine currents in the region and important wind system changes 
(Scherer et al. 2020). We must also consider the great importance of microclimates or 
local climates for the biota, depending on factors such as altitude, proximity to small 
or large bodies of water, especially the sea and its currents, and the relationships 
between flora and fauna and between different animal groups. 

8.6 Conclusions 

The presence of a number of ichnosites with dinosaur tracks in the basins along 
the Brazilian Atlantic coast, or slightly more inland, indicates a remarkable diver-
sity index. This diversity is compared with the dinosaurian fauna on the western 
shore of Africa. These ichnosites increase the record provided by the tetrapod body 
fossils, which are very rare in the area, and contribute to the understanding of the 
paleoenvironments, paleogeography, and paleoclimate of the Brazilian Northeast. 

Dinosaur tracks have been identified in several basins, initially revealing the 
presence in the Early Cretaceous (Berriasian-Albian) of many clades of non-avian 
dinosaurs. These include sauropods (probably titanosaurids and Diplodocoidea), a 
majority of theropods (likely Abelisauroidea or spinosaurids), ornithopods, both 
graviportals (iguanodontids) and small-sized ones, and avian theropods. Alongside 
conventional tracks, some others were discovered in cross-section. In total, about 
32 dinosaur individuals have been found in these 17 basins so far. Their presence 
has often assisted in dating stratigraphic units, confirming them as Mesozoic and 
particularly Cretaceous. It has also contributed to a better understanding of environ-
ments and climate, explaining the relationship between the presence and movements 
(including possible migrations) of dinosaur faunas and the tectonic structure of the 
region and recalling the connection of NE Brazil with the African continent. 

Considering that the sediments of several of these basins closely resemble those 
of the Rio do Peixe basins, and given that some of them have not been visited by 
ichnologists for decades due to their isolated locations, it is suggested that further 
periodic research should be conducted. Erosion may reveal interesting new material, 
but it also poses a risk of destruction. 
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Chapter 9 
Equatorial Dinosaurs During 
the Opening of Atlantic Ocean: The São 
Luís Basin Footprints 

Ismar de Souza Carvalho and Rafael Matos Lindoso 

9.1 Introduction 

In the northeastern Brazil, the origin of South Atlantic Ocean led to the formation of 
vast subaerial environments suitable to generation of ichnological record. Such record 
includes mainly dinosaur trackways and isolated footprints commonly found also in 
the Sousa, Triunfo, Cedro, Malhada Vermelha, Lima Campos, Potiguar, Araripe 
basins, as well as in São Luís Basin, from Berriasian to Cenomanian (Leonardi 
1980a, 1994; Leonardi and Spezzamonte 1994; Carvalho  2000, 2004; Carvalho et al. 
2021; Leonardi and Carvalho 2021; Leonardi et al. 2021). Some of these ichnological 
records in Brazil shed light on most of our comprehension concerning the climate 
and paleoecological aspects during the break-up of Western Gondwana (Carvalho 
2004; Carvalho et al. 2013, 2021; Leonardi and Carvalho 2021). 

In the São Luís Basin (Fig. 9.1), northern Brazil, dinosaur isolated foot-
prints and trackways have been attributed to small and large theropods, sauropods 
and ornithopods in six localities of São Luís and Alcântara counties (Carvalho and 
Gonçalves 1994; Carvalho  1994b, 1995, 2001; Carvalho and Araújo 1995; Carvalho  
and Pedrão 1998). The São Luís Basin ichnocenoses are considered to compose a 
megatracksite, and the most of these footprint-bearing strata are associated to Ceno-
manian tidal flat deposits in an estuarine environmental context (Rossetti 1997, 1998;
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Fig. 9.1 Location map of 
São Luís Basin and its 
tectonic relationship with the 
Parnaíba Basin, Northeastern 
Brazil (modified from 
Pedreira da Silva et al. 2003) 

Carvalho and Pedrão 1998; Carvalho  2001; Medeiros and Schultz 2001; Medeiros 
et al. 2014). 

The São Luís Megatracksite, whose ichnosites are distributed in the borders of São 
Marcos Bay (23,600 km2), occurs in the Alcântara Formation (Rossetti and Truck-
enbrodt 1997) and includes small and large theropods, sauropods and ornithischians 
(bipedal and quadrupedal) (Carvalho 2001). The potential trackmakers are physically 
represented by body fossils found in the region, in particular by isolated remains of 
Spinosaurus sp., Carcharodontosaurus sp., noasaurids and Unenlagiinae (Lindoso 
et al. 2012; Medeiros et al. 2014; Medeiros 2006; Letizio et al. 2022). Ornithischian 
remains are not yet represented in the São Luís Basin, however, those of sauropods 
include Titanosauridae and Rebbachisauridae (Medeiros et al. 2014; Medeiros and 
Schultz 2001, 2002; Lindoso et al. 2013, 2019). Other fossils found in the Alcân-
tara Formation are palynomorphs, plants (angiosperms), invertebrate ichnofossils, 
mollusks (Mytilidae, Inoceramidae, Pectinidae, Plicatulidae, Limidae, Ostreidae, 
Trigonidae and Matricidae), fishes (Dipnoi, Elasmobranchii and Actinopterygii), 
reptiles (Crocodyliforms, Mosasauria, Chelonia and Pterosauria) (Oliveira 1958; 
Klein and Ferreira 1979; Carvalho and Pedrão 1998; Arai  2001; Castro et al. 2004; 
Elias et al. 2007; Lindoso et al. 2011; Medeiros et al. 2014; Moraes-Santos et al. 
2001; Vilas Bôas and Carvalho 1999).
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We present an update of the dinosaur ichnological record from the Alcântara 
Formation, São Luís Basin, northern Brazil, and we emphasize their paleoecological 
and paleoenvironmental significance on the Western Gondwana context. 

9.2 Geological Context 

The São Luís Basin (Maranhão State) is a rift marginal basin of 18,000 km2, whose 
evolution is related to the origin of the Brazilian equatorial margin (Fig. 9.1). The 
initial rifting occurred during the Aptian, by the simple shear stress and lithospheric 
thinning. The depositional pre-Cretaceous history is related to the Parnaíba Basin 
(Carvalho and Pedrão 1998). The sedimentary thickness is 4,500 m (Aranha et al. 
1990) and the Cretaceous outcrops where the dinosaur footprints occur are named 
as Alcântara Formation (Cenomanian). These rocks consist of reddish sandstones, 
siltstones, shales and mudstones, with some interbedded carbonates composed of 
marls and limestones. The main sedimentary structures are channel and planar cross-
stratification, ripple-marks, liquefaction structures, mud-cracks, herring-bone cross-
stratification and hummocky cross-stratification. 

The footprints of Alcântara Formation are found in fine-grained quartzose sand-
stones distributed in the São Luís and Alcântara counties. This set of footprints, in 
the outcrops surrounding the São Marcos Bay, is temporally chronocorrelated and 
occur in the same paleoenvironmental setting. The footprints from these localities are 
in the context of the São Luís Megatracksite, a wide coastal plain where theropods, 
ornithischians and sauropods lived and were the main trackmakers. 

The region where many dinosaur communities lived comprises an estuary in a 
low gradient coastal plain and nearshore environments submitted to tidal currents 
(Rossetti 1996a, b, c; Carvalho  2000). The environmental interpretation points out 
to estuarine, nearshore and shallow marine environments affected by both tide and 
storm processes (Klein and Ferreira 1979; Rossetti 1994, 1996a) under a hot and dry 
climate. 

In the Cenomanian deposits that outcrops in the São Luís Basin there are two 
depositional intervals (Fig. 9.2). The lower succession consists of well sorted and 
fine-grained sandstones interpreted as a regressive interval—an upward transition 
from seaward to landward settings of upper shoreface, foreshore, tidal channel, 
and lagoon-washover environments. Such deposits revealed a prograding, barred 
coast probably formed on the seaward portion of a wave-dominated estuarine system 
(Rossetti 1996a). The footprint bearing-strata are found in the upper succession 
(Rossetti 1996b) that consists of tidal-dominated deposits attributed to channel, sand 
flat, delta, and bay fill depositional settings of an estuary. Rossetti (1996b) considered 
that the lower and upper successions are part of two incised valley fills. The lower 
succession was deposited at a time of slow rise in relative sea-level, meanwhile, 
the upper succession records the transition from the transgressive to the highstand 
systems tract of a younger incised valley.
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Fig. 9.2 Stratigraphic chart 
of São Luís Basin and the 
occurrence of dinosaur 
tracks (modified from 
Carvalho and Pedrão 1998) 

9.3 Footprints: Diversity and Paleobiological Interpretation 

Alongside the cliffs surrounding the São Luís Bay there are six ichnosites (Fig. 9.3) 
named as Ponta da Guia, Ponta do Farol, Praia do Boqueirão, Ilha do Medo, Praia da 
Baronesa and Praia Prefeitura de Alcântara (Carvalho and Gonçalves 1994; Carvalho  
1995, 2001; Carvalho and Araújo 1995).

The localities of Ponta da Guia and Praia da Baronesa show the best-preserved 
footprints. In Ponta da Guia, the most striking footprints are the large-sized ones, 
distributed in seven short trackways, four of them parallel. Other footprints are found
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Fig. 9.3 The São Luís Megatracksite, Alcântara Formation, constituted of six ichnosites named 
as Ponta da Guia, Ponta do Farol, Praia do Boqueirão, Ilha do Medo, Praia da Baronesa and Praia 
Prefeitura de Alcântara (Baronesa Beach and Prefecture), and its paleogeographical position during 
the Cenomanian (lower left corner) (modified from Carvalho 2001)

in Praia da Baronesa, generally as isolated imprints, although there is a short trackway 
with three consecutive footprints. 

9.3.1 Ponta da Guia Ichnosite 

Seven short trackways (SLPG-A, SLPG-B, SLPG-C, SLPG-D, SLPG-E, SLPG-F 
and SLPG-G) four of them parallel, with tridactyl and mesaxonic footprints (Fig. 9.4). 
They are preserved as concave epirelief with 40–43 cm in width and 43–50 cm in 
length. The digits present the same size, and they are pointed or show claws. The track-
ways and footprints found in this ichnosite are described below; their codification 
SL means São Luís Basin and PG is the locality of Ponta da Guia.

SLPG-A is a trackway constituted of four consecutive tridactyl footprints (SLPG-
A02, SLPG-A03, SLPG-A04 and SLPG-A05). The step angle is obtuse (165º) and 
the oblique pace presents an average value of 245 cm. The footprints are preserved 
as concave epirelief, with pointed digits (SLPG-A02 and SLPG-A05) or slightly 
rounded (SLPG-A03 and SLPG-A04), all almost the same size. The rear borders of 
the footprints are rounded and the preservation differences are related to the erosive 
surface where the footprints are found.
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Fig. 9.4 Distribution map of the Ponta da Guia ichnosite with the theropod tracks (Carvalho 1994b)

SLPG-B trackway presents four consecutive footprints (SLPG-B06, SLPG-B s/ 
nº, SLPG-B07 and SLPG-B08). The step angle is obtuse (170°) and the oblique pace 
presents an average value of 175 cm. The footprints are tridactyl, mesaxonic and show 
a rounded rear border (especially SLPG-B07 and SLPG-B08). They are preserved as 
concave epirelief in a recently eroded surface (Fig. 9.5).

The trackway SLPG-C (Fig. 9.5a) is constituted of three tridactyl consecutive 
footprints (SLPG-C09, SLPG-C10 and SLPG-C11). The step angle is obtuse (170°) 
and the oblique pace presents an average value of 257 cm, the longest one among the 
seven trackways of Ponta da Guia ichnosite. The digits are thin in their extremities 
and in the footprint SLPG-C09 there is a clear claw. The interdigital angles between 
digits II–III and III–IV are acute and the rear borders of the footprints are pointed. 

Three consecutive footprints (SLPG-D13, SLPG-D14 and SLPG-D15) constitute 
the trackway SLPG-D (Fig. 9.5b). The step angle is 165° and the oblique pace
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Fig. 9.5 Ponta da Guia ichnosite. a Trackways and isolated footprints from Alcântara Formation, 
Ponta da Guia; b The short theropod trackway (SLPG-D) with three footprints; c Detail of the large 
theropod footprint SLPG-D 15 (modified from Carvalho 1994b)

presents an average value of 238 cm. The footprints are tridactyl, mesaxonic with 
acute hypexes. There is a claw imprint in SLPG-D15 and the others (SLPG-D13 
and SLPG-D14) present pointed digits. All they are preserved as concave epirelief 
(Fig. 9.5c). 

The trackway SLPG-E is constituted of four non consecutive footprints (SLPG-
E18, SLPG-E19, SLPG-E20 and SLPG-E21). Between the footprints SLPG-E19 and 
SLPG-E20 there is an erosion gap that interrupts the continuity of the bedding plane 
where the footprints are preserved. All of them are tridactyl, mesaxonic and with 
pointed digits. In the rear border of SLPG-E19 there is a prominent projection that 
suggests the presence of digit I. The step angle is 153° and the oblique pace presents 
an average value of 195 cm. 

Two consecutive tridactyl and mesaxonic footprints (SLPG-F23 and SLPG-F24) 
are a portion of an incomplete trackway (SLPG-F). They are preserved as concave 
epirelief. The digits are pointed and the hypex between digits II–III and III–IV are 
acute. The oblique pace measures 190 cm. 

The SLPG-G trackway is also constituted of two consecutive footprints (SLPG-
G27 and SLPG-G28), tridactyl and mesaxonic. In SLPG-G28 there are claw imprints 
in all the three digits, with a very acute rear border. There are not claw imprints in the 
SLPG-G27, despite digit III being tapered. In both footprints the rear border is acute, 
indicating the probable presence of a digit I. The oblique pace measures 190 cm. 

There are nine isolated footprints (SLPG-01, SLPG-12, SLPG-16, SLPG-17, 
SLPG-22, SLPG-25, SLPG-26, SLPG-29 and SLPG-0) in the same bedding surface
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of the trackways preserved as concave epireliefs (Fig. 9.5). In the SLPG-01 foot-
print does not preserve the digits. It has a rounded morphology and despite it being 
preserved as convex epirelief, the central area of the footprint is concave. SLPG-
12 shows two digits with rounded extremities, without any evidence of claws. The 
hypex between these two digits is acute and the rear border of the footprint is rounded. 
SLPG-16 footprint is tridactyl, mesaxonic, with pointed digits, without claw impres-
sions and presents a rounded rear border. Digit III is the larger and the hypexes 
between digits II–III and III–IV are rounded. The SLPG-17 footprint is tridactyl, 
mesaxonic and the extremities of the digits and hypexes are rounded. The rear border 
of the footprint is very acute suggesting the imprint of a digit I. The footprints SLPG-
22 and SLPG-25 are tridactyl, mesaxonic and present digits of the same length with 
rounded anterior extremities and the rear border of the footprints are rounded. In 
SLPG-22 the hypexes between digits II–III and III–IV are rounded, while in SLPG-
25 the hypex between digits II–III is rounded, while between digits III–IV is acute. 
The tridactyl and mesaxonic SLPG-29 footprint, despite showing digits with the 
same length, the anterior extremities are pointed, and the rear border of the foot-
print is acute. The hypexes between digits II–III and III–IV are acute. The footprint 
SLPG-26 is tridactyl, mesaxonic and the digit III is the largest. While digit III shows 
a pointed anterior extremity, in digits II and IV they are rounded. The hypex between 
digits II–III is rounded and between digits III–IV is acute. The rear border of the 
footprint is acute and slightly curved. The SLPG-0 is the biggest footprint in this 
ichnosite, with a length of 70 cm, penetrating 25 cm in the substrate. It is tridactyl, 
mesaxonic with short digits and rounded rear border. The hypexes between digits 
II–III and III–IV are wide and rounded. Digits II and IV are pointed and digit III 
presents a rounded anterior extremity. In the surrounding area of the footprint there 
is a deformation zone, probably corresponding to the displacement rim. 

The succession of the strata bearing the footprints is interpreted as a tidal plain, cut 
by freshwater channels and bordered by aeolian dunes, under a hot and dry climate 
(Carvalho 1995, 2004). 

A gregarious behavior was interpreted to the Ponta da Guia ichnosite based on the 
parallel trackways SLPG-A, SLPG-B, SLPG-C, SLPG-D and two isolated footprints 
(SLPG-12 and SLPG-16) that point to the same southeastern direction. Other groups 
of footprints are grouped in a southwestern direction (SLPG-G, SLPG-25 and SLPG-
26). These preferential directions probably are a sign of herding structure as observed 
by other authors (Currie 1983; Leonardi 1980b, 1989; Lockley 1986, 1991; Lockley 
et al. 1986, 1992; Thulborn 1990). 

9.3.2 Ponta do Farol Ichnosite 

It was identified just one isolated, tridactyl, digitigrade and mesaxonic footprint 
(SLPF-01) with pointed digits suggestive of claws. It is preserved as concave epire-
lief. It is 35 cm in width and 40 cm in length, with acute hypexes (38°) between
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digits II–III and III–IV (Fig. 9.6a). Nearby there are deformation structures associ-
ated with liquefaction that are similar to enlarged tridactyl footprints. Nevertheless, 
short sauropod tracks recently found at this locality (Fig. 9.7) enhance Ponta do Farol 
ichnosite for a promising paleobiological survey. 

Fig. 9.6 Trackways and isolated footprints from Alcântara Formation. a Isolated footprint from 
Ponta do Farol ichnosite; b Theropod isolated footprint and short trackway with liquefaction foot-
prints from Praia do Boqueirão ichnosite; c A short track and isolated footprints from Ilha do Medo 
ichnosite (modified from Carvalho 2001)
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Fig. 9.7 Short sauropod 
tracks at Ponta do Farol 
ichnosite 

9.3.3 Praia do Boqueirão Ichnosite 

There are four isolated footprints in this ichnosite. They are preserved as concave 
epirelief in a fine-grained sandstone. Liquefaction structures may occur surrounding 
some footprints (SLPB-01), while the matrix on the posterior borders and digits show 
crenulations. SLPB-01 is 45 cm in width and 48 cm in length with rounded digits. In 
the other footprints (SLPB-02, SLPB-03, SLPB-04) it is not possible to identify the 
digits, as they are circular deformations with concentric rings ranging 30–40 cm in 
width and 40–45 in length. These features in waterlogged substrate are interpreted 
as the substrate deformation induced by the load of the trackmakers (Fig. 9.6b).
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9.3.4 Ilha do Medo Ichnosite 

This ichnosite shows sixteen isolated footprints and one short trackway (Fig. 9.6c). 
The isolated footprints are generally tridactyl, mesaxonic and preserved as concave 
epirelief. Their sizes range from 30 to 70 cm in width and 30 to 75 cm in length. There 
are no evident claws despite the digits of some footprints being pointed (SLIM-01, 
SLIM-02 SLIM-14, SLIM-15, SLIM-17) and with acute hypexes (interdigital angles 
of 35–45°), suggesting theropod trackmakers. The footprints SLIM-03, SLIM-13, 
SLIM-16 show more rounded digits, but present V-shaped rear borders, a dubious 
aspect to interpret as ornithopod trackmakers. They are 30–45 cm in width and 30– 
48 in length. The footprint SLIM-04 (55 cm in width and 55 cm in length) shows 
a cruciform pattern with two right-angle hypexes (90°), side by side. The opposite 
smaller digit is a possible digit I. 

The short trackway SLIM is composed of eight footprints (SLIM-05, SLIM-06, 
SLIM-07, SLIM-08, SLIM-09, SLIM-10, SLIM-11, SLIM-12), with two distinct 
sizes and pattern. It is possible to observe three elongated digits, isolated from 
the plantar portion, in some of the smaller footprints (15–20 cm in width and 20– 
30 cm in length). They are alternated with tetradactyl footprints (SLIM-06, SLIM-
08, SLIM-10) with rounded and elongated digits, in which the rear footprint borders 
are more acute (Fig. 9.6c). These show width and length (30–35 cm and 33–40 cm, 
respectively) bigger than SLIM-05, SLIM-07, SLIM-11, SLIM-12. The oblique pace 
between SLIM-06 and SLIM-08 (Fig. 9.8) is 45 cm, and between SLIM-05 and 
SLIM-07 is 30 cm. An ornithischian could be the trackmaker of this short trackway. 

Fig. 9.8 A dubious tetradactyl footprint (SLIM-08) with rounded digits; it is interpreted as produced 
by an ornithischian trackmaker
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9.3.5 Praia da Baronesa Ichnosite 

The footprints from Praia da Baronesa ichnosite (Figs. 9.9 and 9.10) are tridactyl, 
mesaxonic, digitigrad, with evidence of claws and digital pads. They are smaller 
than the Ponta da Guia footprints, with 22–33 cm in length and the average value 
of 18 cm in width. There are twenty-two footprints preserved as convex epirelief 
in fine-grained sandstone, many of them showing a more reddish color (distinct 
from the greenish color of the surrounding matrix) and fluidization structures, 
surrounding the digits and rear borders (Carvalho and Gonçalves 1994). There are six 
isolated footprints (ALBA-11, ALBA-12, ALBA-13, ALBA-14, ALBA-15, ALBA-
18) with pointed digits, some with claw impressions (ALBA-13, ALBA-14, ALBA-
15, ALBA-18). The hypexes are acute and the interdigital angles between digits 
II–III and III–IV range from 30 to 45°. ALBA-15 is the smallest footprint of this 
set with 15 cm in width and 20 cm in length. The others (ALBA-13, ALBA-14 and 
ALBA-18) present a range of 30–45 cm in width and 30–48 cm in length.

There are also short tracks with two (ALBA-01 and ALBA-02, ALBA-06A and 
ALBA-06B, ALBA-07 and ALBA-08, ALBA-09 and ALBA-10) three (ALBA-03, 
ALBA-04, ALBA-05) and five (ALBA-16, ALBA-17, ALBA-18, ALBA-19, ALBA-
20) consecutive footprints. These present a wide range of sizes (ALBA-09 and 
ALBA-10—12 cm in width, 15 cm in length; ALBA-01 and ALBA-02—50 cm in 
width and 60 cm in length). Some footprints of distinct tracks (ALBA-03, ALBA-04 
and ALBA-05; ALBA-06A and ALBA-06B; ALBA-07 and ALBA-08; ALBA-16) 
show crenulations of the matrix surrounding the footprints, that is an evidence of 
liquefaction. The trackway with the longest paces (ALBA-16, ALBA-17, ALBA-18, 
ALBA-19, and ALBA-20) shows an average oblique pace of one meter, and foot-
prints with 15 cm in width and 25 cm in length. The footprints present pointed digits 
and acute hypexes with interdigital angles between digits II–III and III–IV ranging 
from 35 to 38º. ALBA-16 presents a liquefaction feature surrounding the footprint, 
with the crenulations of the matrix (Figs. 9.10a, 9.11).

A common feature in the Praia da Baronesa footprints is the contrasting colors 
from the surrounding substrate. There is a range from reddish to blue-gray colors, 
contrasting with the light greenish hue of the substrate (Fig. 9.11). Kuban (1991a) 
also observed this feature in dinosaur tracks of the Glen Rose Formation (Lower 
Cretaceous, Texas—USA) and explained this taphonomic aspect as the result of 
secondary sediment infilling on the original track depressions and oxidation of iron 
on the surface of infilling material. It is likely that the pressure from the foot on 
the substrate had the consequence of expelling water and perhaps salts or oxides 
in solution or suspension, thus locally changing the characteristics—and later the 
color—of the compressed soil. The deformation of the substrate with the liquefaction 
structures is the result of a “dinostatic pressure” in water-saturated and low cohesive 
sediments. Such substrate aspect is corroborated by the metatarsal impressions in 
many footprints (Carvalho 1994c). Kuban (1991b) considered that this preservation 
character could be indicative of a behavior response to a soft substrate, a low posture
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Fig. 9.9 a The outcrop of 
Praia da Baronesa ichnosite. 
b This is the locality where 
dinosaur remains and 
footprints are found in the 
same bedding plane; 
theropod tooth with probable 
dromeosaurid affinities 
found in the same surface of 
the dinosaur footprints

assumed whenever a dinosaur foraged in mud flats or shallow water for small food 
item, stalking large prey, or while approaching other dinosaurs. 

9.3.6 Praia Prefeitura de Alcântara Ichnosite 

In this ichnosite (Fig. 9.10b) there are two tridactyl footprints (ALPR-01, ALPR-02) 
and one with two digits (ALPR-03) preserved as concave epirelief. ALPR-01 shows 
more pointed digits than ALPR-02 and ALPR-03. They range from 20 to 30 cm in
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Fig. 9.10 Trackways and isolated footprints from a Praia da Baronesa and b Praia Prefeitura de  
Alcântara ichnosites (modified from Carvalho 2001)

width and 30–45 cm in length. Acute hypexes, with the angles between digits II–III 
ranging from 30 to 45° and digits III–IV 35 to 40°. 

There are also four isolated rounded structures (Fig. 9.12), with concentric rings, 
that range from 30 to 40 cm in width and 40–45 in length. It is also possible to 
identify three consecutive similar structures (ALPR-04, ALPR-05, ALPR-06), with 
an average oblique pace of 60 cm, that are probably part of a short trackway. These
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Fig. 9.11 Footprints from 
Praia da Baronesa ichnosite. 
The deformation of the 
substrate with the 
liquefaction structures is the 
result of a “dinostatic 
pressure” in water-saturated 
and low cohesive sediments. 
a A theropod footprint 
(ALBA 06B) surrounded by 
a liquefaction structure; b In 
some footprints, the 
crenulations also occur 
inside the imprint (ALBA 
04); c A reddish color 
footprint surrounded by a 
greenish matrix with 
liquefaction structures
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Fig. 9.12 Footprint from 
Praia Prefeitura de Alcântara  
ichnosite. Isolated rounded 
structure, with concentric 
rings, interpreted as 
liquefaction structures 
induced by a sauropod 
trackmaker 

rounded structures are interpreted as liquefaction structures induced by sauropod 
trackmakers. 

9.3.7 Paleobiological Interpretation 

The footprints found at Ponta da Guia ichnosite were produced by two different 
dinosaur clades: Theropoda and Ornithopoda. The ones attributed to theropods 
are large-sized footprints. Four trackways present parallel orientation, a possible 
evidence of a gregarious behavior. The ornithopod footprints were assigned to 
hadrosaurians (Carvalho and Pedrão 1998). It would then be rather primitive 
hadrosaurs. Probably , during the Cenomanian, there was the dispersion of dinosaur 
faunas between the two American continents. 

In Ponta do Farol ichnosite, the single isolated footprint is considered to be 
produced by a large-sized theropod trackmaker. At Praia do Boqueirão ichnosite 
the footprints are load deformations in the substrate and only one footprint denotes 
digits and the plantar impression, produced by a probable ornithopod trackmaker. 
The Ilha do Medo ichnosite presents isolated footprints of large-sized theropods, 
ornithopods and a probable short track of a quadrupedal ornithischian. A small-sized



9 Equatorial Dinosaurs During the Opening of Atlantic Ocean: The São … 249

theropod and sauropod footprints are possible to be identified in the Praia Prefeitura 
de Alcântara. 

The trackways at Ponta da Guia ichnosite show a set of four large-sized theropod 
trackways (SLPG-A, SLPG-B, SLPG-C and SLPG-D), that present high morpho-
logical similarity, moving in SE direction. The angular range of movement direc-
tions is only 20° (between 120 and 140°), and there is a quite standard intertrackway 
spacing between three of these trackways (SLPG-A, SLPG-B, SLPG-C). The regular 
space between adjacent trackways suggests animals walking in some kind of regular 
formation (Lockley 1991), that constitute good evidence to postulate the gregarious-
ness among the producers (Fig. 9.13). Because there are tracks in different direc-
tions, it is possible to consider the absence of physical barriers in the configura-
tion of the landscape that could have controlled this main movement direction of 
individuals. Despite gregarious behavior occurs more frequently among sauropods 
and ornithopods (Carvalho 1989; Leonardi 1980b, 1981; Lockley et al. 1986, 1992; 
Nadon 1993; Myers and Fiorillo 2009; Castanera et al. 2011, 2014; Lockley et al. 
2012; Piñuela et al. 2016; Paik et al.  2020), there are many examples of parallel 
theropod trackways as an evidence of gregariousness among theropod dinosaurs 
(Leonardi 1984, 1989; Moreno et al. 2012; García-Ortiz and Pérez-Lorente 2014; 
McCrea et al. 2014; Lockley et al. 2015; Heredia et al. 2020; Hernández et al. 2023).

The other main theropod footprint assemblage is located at Praia da Baronesa 
ichnosite. It is composed of randomly oriented trackways and isolated small and 
medium-sized footprints. This is interpreted as the record of a “foraging area” for 
theropods, searching for food in small lagoons and channels of a tidal flat envi-
ronment. During low-tide periods, subaerial exposure of the sediments allowed the 
dinoturbation (Carvalho and Pedrão 1998). The footprints are always associated with 
fluidization structures and present superficial color stains (blue-gray, green or red) 
which can be interpreted as produced in low cohesive sediments and a soft substrate 
(Carvalho and Leonardi 2021; Kuban 1991b). Such substrate aspect is corroborated 
by the metatarsal impressions (Carvalho 1994c; Carvalho and Pedrão 1998) in many  
footprints (e.g., ALBA-03, ALBA-04, ALBA-06B, ALBA-08). The elongate planti-
grade footprints would be explained by a low posture assumed whenever a dinosaur 
foraged in mud flats or shallow water for small food items, stalking larger prey or 
while approaching other dinosaurs. 

The fossils from the Alcântara Formation indicate a diverse vertebrate community 
that lived in the coastal forested areas surrounded by a dominantly dry environment. 
They indicate that during the mid-Cretaceous the northeastern South American and 
northern African continental fauna were more similar than to the austral South Amer-
ican one. This aspect allows us to interpret that faunal interchanges between these 
two continents may have persisted until the early Cenomanian through continental 
bridges (Calvo and Salgado 1996; Popoff 1988; Maisey  2000; Medeiros et al. 2014). 

The main dinosaur fauna from the Alcântara Formation, as regards the body-
fossils, comprises Carcharodontosaurus sp., Spinosauridae, noasaurids with Masi-
akasaurus-like teeth, Diplodocoidea and Titanosauridae (Medeiros and Schultz 2001, 
2002, 2004; Medeiros et al. 2007, 2014; Lindoso et al. 2012, 2013) that can be related 
to the Cenomanian record of the Kem Kem beds, Morocco and to the Bahariya
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Fig. 9.13 The regular space 
between adjacent trackways 
suggests animals walking in 
some kind of regular 
formation, that is a good 
evidence to postulate the 
gregariousness among some 
of the large theropod 
trackmakers from Ponta da 
Guia ichnosite. Art by 
Guilherme Gehr

Formation, Egypt (Stromer 1915; Lapparent 1960; Benton et al. 2000; Richter et al. 
2013; Medeiros et al. 2014; Ibrahim et al. 2020). The Theropoda were mainly iden-
tified through isolated teeth (Fig. 9.14) allowing the classification as Charcarodon-
tosaurus sp., Spinosauridae, Dromeosauridae, Unenlagiinae and Noasauridae (Vilas 
Bôas 1999; Vilas Bôas and Medeiros 1997; Vilas Bôas et al. 1999; Medeiros 2006; 
Lindoso et al. 2012; Letizio et al. 2022). There is also a Spinosauridae named as 
Oxalaia quilombensis (Kellner et al. 2011).

The trackmakers from the Alcântara Formation can be related to the body-
fossilsfound in this lithostratigraphic unit. Fossils of theropods are more diverse than 
sauropods, marked by the occurrence of Spinosauridae and Carcharodontosauridae 
(Carcharodontosaurus sp.) and the probable existence of more than one species of the 
former (Medeiros 2006; Richter et al. 2013; Medeiros et al. 2014). These two groups 
are good options as trackmakers to the large-sized footprints of the Ponta da Guia 
tracksite. Otherwise, small to medium-sized footprints from Praia da Baronesa and
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Fig. 9.14 Dinosaur remains from the bone bed Laje do Coringa, Cajual Island, Alcântara Forma-
tion, São Luís Basin. a Sauropoda tooth; b Carcharodontosaurus sp. tooth; c Spinosauridae 
tooth

Praia Prefeitura de Alcântara ichnosites, could be related to dromeosaurids, unen-
lagiinids or noasaurs. In both cases they are present as body-fossils in the Alcântara 
Formation, sometimes in the same stratigraphic surface as in the case of Praia da 
Baronesa ichnosite. 

There is only one specimen of Rebbachisauridae sauropod formerly described 
to the Alcântara Formation, Itapeuasaurus cajapioensis (Lindoso et al. 2019). It 
is the northernmost record of Diplodocoidea in South America, and it seems that 
rebbachisaurids outnumbered titanosaurs in the early Late Cretaceous in northern 
South America, right before the steep decline of Rebbachisauridae (Barrett and 
Upchurch 2005; Lindoso et al. 2019). Nevertheless, there are also bone fragments and 
osteoderm assigned as Titanosauria (Lindoso et al. 2013; Medeiros et al. 2014); then 
it is very probable that the footprints interpreted as sauropods in the Praia Prefeitura 
de Alcântara ichnosite could be related to these two groups. 

9.4 Paleogeographical Distribution of the Footprints 

The ichnofossiliferous localities of São Luís Basin are in a paleoenvironmental and 
temporal context distinct from the other occurrences of Cretaceous footprints in 
Brazil. They record dinosaur ichnofaunas of a megatracksite (Lockley 1991) as they  
occur in stratigraphic correlated surfaces, with wide geographic distribution. The 
São Luís Megatracksite presents footprints preserved in a coastal environment, on 
a low gradient tidal flat, under hot and dry climate conditions (Pedrão et al. 1993; 
Carvalho 1994a, b, c; Carvalho and Pedrão 1998). 

The low gradient coastal plain allowed the establishment of specific dinosaur 
groups, with a probable ecologic “segregation” of large-sized (Spinosauridae and 
Carcharodontosauridae) and medium to small-sized theropods (Dromeosauridae,
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Unenlagiinae and Noasauridae), throughout the exposed Cenomanian surfaces of 
the nearshore environments (Carvalho and Pedrão 1998). 

The distribution of footprints along the outcrops of São Luís Bay is temporally 
related. The levels with teeth, bones and footprints of dinosaurs, besides other verte-
brates, can be used to correlate the strata, as they are frequently identified in the 
outcrops of the basin. The outcrops with footprints record a same temporal event. 

In coastal environments, footprints can be preserved in the intertidal zone when 
the tide begins its ebb. Thus, those originated early, in the ebb phase, will remain 
for a cycle of approximately 12 h, while those carried out in the tidal filling phase 
will not remain longer than 6 h until they are covered. A sandy beach with a steep 
slope is not the most appropriate environment for the preservation of tracks, as the 
rapid “washing” of the surface at each tidal cycle would be an agent of destruction 
of the footprints left by dinosaurs. On the other hand, in low gradient coastal plains, 
the ebb and flow of each tidal cycle occurs more slowly, favoring the preservation of 
trackways and footprints (Lockley 1991). 

Fragmented bones and teeth of fishes, crocodyliforms, chelonians and dinosaurs 
at Praia da Baronesa ichnosite allow us to consider them as the accumulation of debris 
in a tidal flat environment. The random footprints distribution in this ichnosite could 
indicate a “foraging area” for the theropods, where they wandered across searching 
for food (Carvalho 2001). The theropods would search for fishes, turtles and other 
organisms, foraging food in the exposed channels of the tidal plain. During low-tide 
periods, sub aerial exposure of the sediments allowed the preservation of their tracks 
(Carvalho and Pedrão 1998). 

There is also a brief description of theropod tracks in the neighboring Parnaíba 
Basin, in the Triassic deposits of Sambaíba Formation (Fig. 9.15). However, the age 
of this unit is dubious and the morphology and large diversity of theropod tracks 
illustrated by Assis et al. (2010) is inconsistent with a Triassic age, being more 
probable a Cretaceous age. It is necessary a review of these outcrops and their tracks.

9.5 Paleoenvironmental and Paleoclimatic Contexts 

The bedding surfaces with footprints are found in the context of the “upper succes-
sion” of the Alcântara Formation (Rossetti 1994, 1996a, b). This succession consists 
of tidal-dominated deposits assigned to channel, sand plain, delta, and bay-fill in an 
estuarine environment. Along the coast of a shallow sea an abundant dinosaur fauna 
roamed, recording their footprints on the seashore environments. 

The strata at Ponta da Guia are interpreted as the result of tidal flat and aeolian 
sedimentation. The track-bearing strata are fine-grained sandstones, interbedded with 
argillaceous siltstones, that show small-sized channel and tabular cross-stratification, 
ripple-marks, mud-cracks and clay-balls, accumulated in a sand flat depositional 
environment. The theropod footprints were probably produced in the supra-tidal 
region of a low-gradient tidal flat, where the preservation potential is greater 
(Carvalho 1995; Carvalho and Gonçalves 1994).
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Fig. 9.15 Trackways and isolated theropod footprints from Fortaleza dos Nogueiras, south of 
Maranhão State, Parnaíba Basin

The fossil tracks and skeletal remains found in the fine-grained sandstones and silt-
stones of Praia da Baronesa ichnosite are related to a tidal channel setting (Fig. 9.16). 
During low-tide periods, subaerial exposure of the bedforms allowed them to be 
subject to dinoturbation. Ancient estuarine paleochannels also have high potential 
for burial and preservation of vertebrate skeletal remains (Eberth and Brinkman 
1997). In the same track bearing surface of fine-grained sandstones occur many 
skeletal remains of a diversified fauna (Eugênio 1994) including fishes (Myliobatidae, 
Semionontidae, Enchodontidae and Sparidae families) and reptiles (Pelomedusidae 
testudines, Mosasauridae and Theropoda). The theropod remains (isolated teeth) are 
indicative of a clade with Dromeosauridae affinities (Vilas-Bôas and Medeiros 1997).

Through palynological analyses (Pedrão 1995) a better understanding was 
obtained of some environmental aspects under which the dinosaur fauna of São 
Luís Basin lived. The palynological content of outcrops in the east portion of the 
basin includes miospores, protozoans and polychaetas (Pedrão et al. 1993, 1995).
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Fig. 9.16 Praia da Baronesa  
ichnosite shows small- and 
medium-sized theropod 
tracks living in a 
low-gradient coastal plain. 
The randomly-oriented 
trackways and isolated 
footprints are interpreted as 
the record of a “foraging 
area” for theropods. Art by 
Guilherme Gehr

Continental palynomorphs are pteridophyte spores (Petrotriletes), gymnosperm 
pollen grains (Classopollis major, Equisetosporites ambiguus, Equisetosporites spp., 
Steevesipollenites spp.), angiosperms (Afropollis jardinus, Hexaporotricolpites emil-
ianovi, Cretacaeiporites polygonalis, Cretacaeiporites mulleri) and some taxa of 
doubtful botanical affinity (Elateroplicites africaensis, Galeacornea causea B, Elate-
rocolpites castalaini, Elaterosporites aff. Klaszi and Sofrepites legouxae). The main 
pollen group in this assemblage derives from gymnosperms (Classopollis) akin to 
plants of the Cheirolepideaceae family. Secondarily, there occur Equisetosporites and 
Steevesipollenites pollen grains. All of them are indicative of a hot and dry climate. 
The angiosperm pollen grains are rare, although the presence of A. jardinus indicates 
an equatorial climate. The occurrence of perisporate trilete spores in this assemblage 
also points to the same climate, and in addition, it is indicative of a fluvial influence 
in the depositional area (Carvalho and Pedrão 1998).
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In this palynological assemblage is found marine plankton, including 
unicellular algae (Division Pyrrophyta, dinoflagellates) such as gonyaulacoids 
(Spiniferites), peridinioids (Subtilisphaera cheit) and condensates (Florentinia spp., 
Oligosphaeridium aff. O. breviconispinum). There are also chitinous remains of 
palynoforaminifera and scolecodonts (Fig. 9.17).

9.6 Conclusions 

The fossil footprints from the São Luís Basin are a single record of the Cenomanian 
dinosaur fauna which inhabited the Brazilian equatorial margin during the first stages 
of the Equatorial Atlantic opening. The stratigraphic succession where the footprints 
are found consists of tidal-dominated deposits assigned to channel, sand plain, delta, 
and bay-fill in an estuarine environment. Along the coast of a shallow sea an abundant 
dinosaur fauna roamed, recording their footprints on the seashore environments. 
There are six ichnosites on the outcrops surrounding the São Luís bay distributed 
in the São Luís and Alcântara counties: Ponta da Guia, Ponta do Farol, Praia do 
Boqueirão, Ilha do Medo, Praia da Baronesa and Praia Prefeitura de Alcântara. 
These ichnosites record a same temporal event, in the context of a surface with wide 
geographic distribution, the São Luís Megatracksite. 

Trackways and isolated footprints were interpreted as related to large and small 
theropods, sauropods and ornithischians (e.g., ornithopods) trackmakers. The domi-
nance of large-sized theropod footprints is detected in the southern area of the basin, 
which includes the Ponta da Guia region. To the north, the ichnosites such as that one 
of Praia da Baronesa and Praia do Boqueirão show small- and medium-sized theropod 
tracks. The environmental context of a low-gradient coastal plain favored the estab-
lishment of specific dinosaur communities, with a probable ecologic “segregation” 
of large and other smaller dinosaurs. A gregarious behavior for some large-sized 
theropods is deduced from the analysis of the same oriented direction trackways 
from Ponta da Guia ichnosite. The randomly oriented trackways and isolated foot-
prints from Praia da Baronesa ichnosite were interpreted as the record of a “foraging 
area” for theropods which, in this particular tidal plain environment, probably lived 
on a rather varied diet, composed of small tetrapods and invertebrates, fish, mollusks 
and so on. The palynological data of Cenomanian age is consistent with the inference 
of fluvial, lagoonal and shallow marine depositional environments under dry and hot 
climate. A tidal flat of a low-gradient coastal plain is the most likely environment 
inhabited by the trackmakers.
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Fig. 9.17 The Cenomanian palynomorphs from the Alcântara Formation are consistent with the 
inference of a tidal flat of a low-gradient coastal plain under dry and hot climate inhabited by 
the dinosaur trackmakers. a Classopollis major, b Equisetosporites ambiguous, c Galeacornea 
subtilis, d Elateroplicites africaensis, e Galeacornea causea, f Sofrepites legouxae, g Elaterosporites 
aff. klaszi, h Afropollis jardinus, i palynoforaminifera, j dinoflagellate, k Subtilisphaera cheit, 
l scolecodonts, m Oligosphaeridium sp., n Florentinia sp. (modified from Carvalho and Pedrão 
1998)
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Chapter 10 
New Steps and New Challenges 
to the Brazilian Dinosaur Track 
Researches 

Ismar de Souza Carvalho and Giuseppe Leonardi 

10.1 Introduction 

The history of Brazilian dinosaur ichnology begins in 1924 with the description of the 
first dinosaur footprints from Rio do Peixe Basins. The discovery of the tracks is due 
the research of Luciano Jacques de Moraes (1896–1968), a Brazilian mining engi-
neer, working for the DNOCS (Departamento de Obras contra as Seccas, the Depart-
ment of Works against the Drought), surveying the Sousa County, in the Paraíba 
State, northeast Brazil. Moraes (1924) discovered two dinosaur trackways in the 
mudstones of the riverbed of Rio do Peixe. Based on these trackways it was possible 
the first approach of the age (Comanchean, Lower Cretaceous) of the mudstone 
succession, an important datum to the understanding of the geological framework 
of the basins. These tracks were not further studied or published, except for a brief 
mentions (Price 1961; Cavalcanti 1947; Haubold 1971). Giuseppe Leonardi, from 
December 1975, began a series of thirty-three expeditions to the Rio do Peixe basins 
(1975–2016) and Ismar de Souza Carvalho, over the last twenty-seven years (from 
April 1986) with informal groups of researchers, undergraduate and graduate training 
programs periodically visited the ichnosites of these basins, twice a year, to study the 
dinosaur tracks. The result has been a great number of studies concerning the research 
on dinosaur ichnology and the creation of a natural park of the “Dinosaur Valley”
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(Leonardi and Carvalho 2021). Marcelo A. Fernandes and Luciana B. R. Fernandes 
collected the Botucatu flagstones with ichnofossils establishing one of the largest 
collections of fossil footprints in Latin America. In 2006, these were incorporated 
into the institutional collection of the Federal University of São Carlos, enabling the 
formation of two local museums. 

Many other ichnosites were searched for and discovered since then, especially 
in the Paraná Basin. In the Triassic successions of Rio Grande do Sul State were 
revealed many of the oldest dinosaur tracks of the world (Silva et al. 2007a, b, 2008, 
2012). In the Jurassic and Cretaceous fluvial and aeolian deposits of the Guará and 
Botucatu formations a great diversity of new specimens was discovered (Francischini 
et al. 2015, 2020; Fernandes and Carvalho 2007; Leonardi 1994). 

10.2 A Footprint in the Past and a Step into the Future 

The discovery of a new tracksite is mainly based on the detail observation of natural 
and artificial outcrops on river banks and dry beds, cliffs, mountain ranges, road pave-
ments, rail-road outcrops and quarries, mines and tunnels. The description, illustra-
tion and interpretation of the footprints and trackways changed through time due the 
new technologies and the comprehension of the importance of their sedimentological 
and stratigraphic context. 

The historical methods of field and laboratory research can sometimes be consid-
ered vintage. Nonetheless the mapping of the footprints using compass, metric tape, 
and strings with the gridded quadrant system and graph paper (Leonardi 1977) or  
the direct reproduction on PVC sheets are very efficient and allow an excellent 
approach of the distribution and spatial position of the footprints in the outcrops. 
Other methodologies, especially concerning the photographic reproduction using 
individual printed photographs to be later associated manually in a photomosaic 
is completely outdated due the facilities of the digital cameras and programs for 
merging photographs (Falkingham et al. 2014b). 

After mapping all the footprints they are manually drawn at a small scale, with 
numberless measurements, for statistical analyses. Although these data can be ques-
tioned due the subjectivity of landmarks in footprints, the traditional measurements 
can yield useful results (Leonardi 1991; Farlow  2018). Despite the correct interpre-
tation of a footprint or trackway is always a complex task, the understanding of these 
facts is a step forward in their correct understanding (Falkingham et al. 2016a, b). 

10.3 New Technologies and New Challenges 

Techniques using laser scanning permit imaging with higher detail and precision the 
shape and position of the footprints, producing digital rock outcrops that can be used 
to compare with other outcrops and preserved for future studies (Medeiros et al.
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2007; Romilio et al. 2017; Leonardi and Carvalho 2021). Also the use of drones 
(Romilio et al. 2017; Xing et al. 2018; Petti et al. 2018) permit to cover in detail 
large areas and steep cliffs. 

Other important point is the use of the 3D photogrammetry techniques to produce 
the topographic images allowing a more precise delimitation of the contours and 
perception of the footprints morphology. The 3D photogrammetry uses softwares to 
combine multiple photos of an object taken from different directions and angles into 
one 3D digital model of that object (Vitkus et al. 2023). This technique should be 
used in the description of the new localities with dinosaur footprints and also as a 
tool of geoheritage preservation to the known ichnosites. 

All new digital technologies of photography and surveying, by means of manned 
or unmanned aircrafts (today especially by drones), although extremely valuable, do 
not exempt us from the field work. The preliminary study of geological maps and 
previous studies to locate the most favorable areas to specific research, the accurate 
examination of outcrops are essential to the success of new discoveries. This is also 
the case when the fossil footprints are, as is often the case, on inclined or even vertical 
rocky walls, on the roofs of mines or tunnels (Staines and Woods 1964; Meyer et al. 
1999; Moreau et al. 2020; Belvedere et al. 2008), generally on places of difficult 
access. Experience has shown that publications of ichnologic material made solely 
on the basis of photographs taken by others or from far away, almost always lead to 
make gross mistakes. 

10.4 Looking Forward 

The ichnotaxonomy presents many problems concerning the trackmakers behavior 
and the substrate physical properties. Therefore, a prudent and limited use of ichno-
taxonomy is recommended, that is, it is advisable to establish new taxa names for 
new kinds of fossil footprints, only after statistical analysis (Belvedere et al. 2018; 
Belvedere and Farlow 2016) and only in the case that such tracks have a good or excel-
lent state of impression and morphological preservation (Falkingham et al. 2014a, 
b; Marchetti et al. 2019; Razzolini et al. 2014, 2016). It should also be avoided to 
establish new taxa for isolated footprints, even if of excellent quality of preservation. 
It is therefore suggested to reserve the establishment of new taxa for trackways of 
at least three footprints (or pairs of footprints) in sequence, including the trackway 
parameters in the diagnosis. This allows a better understanding of the trackmaker. 
The methods of geometric morphometric analysis for the dinosaurian ichnodiversity 
(Castanera et al. 2015, 2018) and trackmakers’ behavioral patterns (Citton et al. 2017) 
should be tested in the Brazilian ichnosites. It is of special importance to follow the 
standard protocol on these issues put forward by Falkingham et al. (2018). 

Other aspect to be evaluated is the land-vertebrate ichnofacies (Lockley 2007; 
Lockley et al. 1994, 2007; Meyer et al. 1999) and the stratigraphic correlation of 
distinct outcrops in a same basin or neighboring basins, to apply the concept of
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megatracksites established by Lockley and Meyer (2023) or as a tool of stratigraphic 
correlation (Carvalho et al. 2019). 

The perspectives in studying the Brazilian fossil tracks include new methods for 
the documentation, such as laser scanning, aerial and close-range photogrammetry, 
three-dimensional (3-D) models and biplanar X-ray 3-D motion analysis (Belvedere 
et al. 2012; Breithaupt and Matthews 2012; Petti et al. 2018; Costa-Pérez et al. 2019; 
Gatesy and Ellis 2012, 2016; Matthews et al. 2016; Romilio et al. 2017; Wings et al. 
2016; Leonardi and Carvalho 2021). It is also important petrographic studies and 
clay mineral analysis of the matrix where the footprints occur. The petrography will 
allow recognizing the role of microbial mats in the preservation (Carvalho et al. 
2013), and the clay mineral analyses (Dai et al. 2022; Rodrigues et al. 2023), the 
influence of the clay mineralogy in the morphological pattern of the footprints and 
paleoenvironmental interpretation. 

The experimental analysis (Falkingham and Gatesy 2014; Falkingham et al. 2010; 
Gatesy and Ellis 2016; Marty  2005, 2012; Marty et al. 2009) are important methods 
to evaluate the relationships between the physical properties of the substrate, the 
behavior of the trackmakers and the induced morphological patterns. Previous studies 
on experimental analysis should be considered in any new analysis of the Brazilian 
dinosaur footprints. Besides the control of the geological context of the occur-
rences, the observation of the recent tracks can be very useful to comparisons to 
the paleoenvironmental interpretations (Carvalho and Leonardi 2021). 

The use of AI (Artificial Intelligence) opens new perspectives to ichnology 
concerning a faster and detailed classification of the footprints. An example of this 
potential was presented by Ha and Kim (2023) to validate ichnotaxa, employing 
convolutional neural network-based Xception transfer Learning. This technique 
allowed to automatically classify ornithopod dinosaur tracks. These machine-
learning techniques open new perspectives to verify the ichnotaxonomic assign-
ments and to compare a great number of samples, with the establishment of a global 
relationship of the ichnofaunas. 

A challenge to the future is the in situ and ex situ preservation of trackways and 
fossil footprints. The in situ preservation is always subject to vandalism, erosion, 
weathering and limitations to urban expansion. In tropical environments the vegetal 
covering and weathering induces a great impact in the aspects of the bedding planes 
with footprints just after few years. The wearing of the surface, chemical weathering 
and cracking are recurrent aspects that lead to the destruction of the footprints. 
The employ of airborne and handheld high-resolution LIDAR (light + radar, an 
acronym for light detection and ranging) for characterization and conservation of 
fossil tracks (Platt et al. 2018) could be very useful as a tool to the control of natural 
and anthropogenic destruction of outcrops with footprints. On the other hand, the 
ex situ preservation in museums, universities, research centers and open air are also 
difficult. The dimensions, weight and friability of the samples with trackways and 
footprints are a problem to handle and to house adequately in the paleontological 
collections (Carvalho 2004). The open-air exhibition in an urban environment, as in 
the sidewalks of the Araraquara or in São Carlos cities (São Paulo State, Brazil) are 
also a challenge to preservation as a geoheritage, with the addition of abrasion by
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the shoes of the passers-by (Francischini et al. 2020). Although they show a great 
potential for education, these flagstones are exposed to the same damages of the 
in situ trackways and fossil footprints found in the outcrops. 

Another dare is to improve the interest of the “pure” geologists (stratigraphers, 
tectonists, geophysicists), who normally do not deal with paleontological data, espe-
cially in the results of vertebrate ichnology. It is important to present the information 
and interpretation obtained from the ichnological studies as a scientific data to the 
increase of the geological knowledge of a region, instead of objects of curiosity. 

In the perspective of ichnology popularization, the use of smartphones and tablets 
to apply augmented reality is a powerful tool for instruction. The possibility to 
connect the real surfaces with fossil tracks and the reconstruction of life sceneries 
of the trackmakers has a great educational potential. Other strategies to the dissem-
ination of the dinosaur tracks information from Brazil should include the artificial 
intelligence, an important new approach to the science vulgarization. 

10.5 New Perspectives for Field Exploration in Brazil 

Brazil is a sub-continental country, with its 8,510,000 km2 of area, greater than the 
area of Europe with the exclusion of European Russia (6,031,000 km2), little less 
than that of the United States of America (9,834,000 km2) and Canada (9,985,000 
km2); and greater than the area of Australia (7,688,000 km2). Field research often still 
takes place, in Brazil, in physical environments that are difficult to reach and explore. 
Several sedimentary basins remain to be partially explored and others totally. 

As a result, there are many sedimentary basins whose exploration needs to be 
increased and/or improved. However, it should also be remembered that, especially 
in the most densely populated areas, most fossils in general and especially fossil tracks 
have appeared as secondary products of excavations: for tunnels, mines, highway and 
rail-road cuts, quarries, building and bridge foundations, water wells, and canals. In 
Brazil, the complex of Amazonian basins (Acre, Solimões, Alto Tapajós, Amazonas 
and Marajó, and minor ones) has only been touched, under the aspect of the vertebrate 
ichnology, with some results in the Tacutu Basin (Barros et al. 2023, 2024a, b, c) 
and at the margins of the Marajó Basin (Ferreira et al. 1979). There is an immense 
area to be explored, although the wilderness environments make searching difficult. 

The large Parnaíba Basin has a similar situation. Only three ichnosites have been 
reported: São Domingos of Itaguatins, in the Tocantins State (Leonardi 1980, 1994; 
De Valais et al. 2015), Fortaleza dos Nogueira locality (Assis et al. 2010) and a site 
along the Itapecuru river, in the Maranhão State (Menezes et al. 2019). Other large 
areas have been visited by ichnologists, but the results for now are limited to this, and 
there is much opportunities for further research. The Paraná Basin has been much 
more systematically visited, with remarkable results, but there are still good chances 
of new discoveries. 

The Northeastern interior basins, intensely explored by ichnologists, should be 
periodically revisited, since erosion can highlight new outcrops of layers with fossil
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footprints. In the basins of the Rio do Peixe, remains to visit the westernmost part of 
the basin of Sousa, and the northern border of the Triunfo Basin. 

All these perspectives are important tasks to the development of the vertebrate 
ichnology in Brazil. However, there is an unsolved question in the Brazilian pale-
ontological studies that is the recognition and value of the “invisibles of science” 
as defined by Carvalho and Leonardi (2022). The Brazilian paleontologists cannot 
continue to be blind about the imperative importance to be aware of the native, 
enslaved, riverside populations, workers operating in mines and quarries, the popu-
lation of the villages where fossils are found, field or laboratory assistants who have 
volunteered or contractually contributed to the assistance of scientists. Their impor-
tance should be recognized as relevant to the advancement of knowledge of the 
science of fossils. 

10.6 Conclusion 

The fossil footprints should be analyzed in their stratigraphic context and new 
technical procedures are needed to represent them in the outcrops, including 
3D photogrammetry and laser scanning techniques, to their representation in the 
outcrops. They should be studied neither just like isolated biogenic structures nor 
just as a record of the passage of individual dinosaurs but rather as populations 
and associations in their whole paleobiological, sedimentological, and stratigraphic 
settings. This will allow a better use of them in paleoenvironmental, paleoclimato-
logical, and paleogeographical interpretations. Other important point is to develop 
new strategies for the geoheritage conservation, including ex situ and in situ condi-
tions. A good strategy is the diffusion of the scientific knowledge through formal 
and non-formal education. 

The new challenges also include the searching for, the discovery and the preser-
vation of outcrops before they disappear due the urban expansion and changes in the 
mining or quarrying techniques, that nowadays are no more a manual rock extraction. 
The in situ or ex situ preservation of the dinosaur footprints is certainly the great 
challenge to the future of this Brazilian geoheritage. 
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